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 Abstract: In this work, Morse potential parameters of bcc crystals have been calculated based on 
the calculation of volume per atom and atomic number in each elementary cell, as well as the 
energy of sublimation, the compressibility and the lattice constant. They are used for studying the 
anharmonic interatomic effective potential, local force constant in XAFS (X-ray Absorption Fine 
Structure) theory. Numerical results for Fe, W and Mo are found to be in good agreement with 
experiment and with those of other theories. 
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1. Introduction
∗∗∗∗
 

Anharmonic interatomic potentials including Morse potential parameters [1,2], have been 
intensively studied [1-17]. They are used for the calculation and analysis of the thermodynamic 
parameters, especially, the anharmonic effects contained in XAFS (X-ray Absorption Fine Structure) 
[10-15] which influence on the physical information taken from these spectra. Morse potential is an 
empirical potential [1,2] and their parameters are often extracted from experiment [16,17]. Therefore, 
calculation and analysis of Morse potential parameters are of great interest, especially in XAFS theory. 

This work is a next step of our previous work [18] for the calculation and analysis of Morse 
potential parameters of bcc crystals based on the calculation of volume per atom and atomic number in 
each elementary cell. This calculation of atomic number is our further development compared to the 
previous theory [18], and due to that the present method can be generalized to the calculation for the 
other crystal structures. The energy of sublimation, the compressibility and the lattice constant used in 
the present considerations are available [19-21]. The obtained Morse potential parameters are applied 
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to the calculation and analysis of the anharmonic interatomic effective potential, local force constants 
and anharmonic effects in XAFS theory. Numerical results for Fe, W and Mo are compared to 
experiment [17] and to those of other theory [2] which show good agreement.  

2. Formalism 

2.1. Calculation of  Morse potential parameters 

Following [18] the potential energy ( )ijrϕ  of two atoms i and j separated by a distance ijr  is given 

in terms of the Morse function by 
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where D,α  are constants with dimensions of reciprocal distance and energy, respectively; 
or  is the 

equilibrium distance of the two atoms. Since ( ) DDro ,−=ϕ  is the dissociation energy. 

In order to obtain the potential energy of the whole crystal whose atoms are at rest, it is necessary 
to sum Eq. (1) over the entire crystal. This is most easily done by choosing one atom in the lattice as 
an origin, calculating its interaction with all the others in the crystal, and then multiplying by 2/N , 
where N is the total atomic number of the crystal. Thus, the total energy Φ  is given by 
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Here jr  is the distance from the origin to the jth atom. It is convenient to define the following 

quantities 
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where jjj lnm ,,  are position coordinates of any atom in the lattice. Applying Eq. (3) to Eq. (2), the 

energy can be rewritten as  

( ) ∑∑
−−

−=Φ
j

j

j

j aMaM
eLeLa

αα
ββ 2

22  .                                               (4) 

The first and second derivatives of the energy of Eq. (4) with respect to a  are given by 
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At absolute zero T = 0, 
oa  is value of a  for which the lattice is in equilibrium, then ( )oaΦ  gives 

the energy of cohesion, [ ] 0/
0

=Φ adad , and [ ]
0

22 / adad Φ is related to the compressibility. That is, 

( ) ( )000 aUa =Φ ,                                                                 (7) 

where ( )00 aU  is the energy of sublimation at zero pressure and temperature, i., e., 

0
0

=






 Φ

ada

d
   ,                                                                  (8) 

and the compressibility is given by  
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where 0V  is the volume at T = 0, and 00K  is compressibility at zero temperature and pressure.    

Our further development compared to the previous calculation [18] is proposing a method for 
determining the volume per atom Va for bcc crystal 

n
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where VEC = a3 is the volume of an elementary cell of a cubic crystal including bcc, n is the atomic 
number in this elementary cell and a is the lattice constant. 

Substituting Eq. (10) in Eq. (9), the compressibility is expressed by 
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Using Eq. (5) to solve Eq. (8), we obtain 
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Consequently, from Eqs. (4,6,7,11) we obtain the relation 
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which is different from that in [18] by containing the atomic number n in an elementary cell. 

Solving the system of Eqs. (12,13) we obtain βα , . Substituting the obtained results into the 

second equation of Eqs. (3), we determine 0r . Using the obtained βα ,  and Eq. (4) to solve Eq. (7), 

we obtain L. From this L and the first equation of Eqs. (3) we obtain D. The obtained Morse potential 

parameters D and α depend on the compressibility 00K , the energy of sublimation 0U  and the lattice 

constant a  which are known already for about all crystals [18-20]. Hence, all Morse parameters 
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depend on the value n separated for different crystal structures, and we will calculate it in the next 
subsection for bcc crystals. 

2.2. Application to calculation of  anharmonic interatomic effective potential and local force  constant 

in XAFS theory 

Fig. 1 shows Fourier transform magnitudes of XAFS at 293 K and 393 K, as well as XAFS of Fe, 
measured at Novo-Simbirk (Rissia) [17]. They are different at these temperatures illustrated by their 
shifts which show the evident anharmonic effects in XAFS. For describing these effects an 
anharmonic XAFS theory is necessary [7-15]. 

 

      Fig. 1. Fourier transform magnitudes of experimental XAFS of Fe at 293 K and 393K and XAFS spectrum at 
393 K [17] measured at Novo-Simbirk (Russia). 

     The expression for the K-edge anharmonic XAFS function [11] is described by 
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where )(kF  is the real atomic backscattering amplitude, φ is net phase shift, k  and λ  are the wave 

number and the mean free path of the photoelectron, respectively, r is instantaneous bond length 
between two immediate neighboring atoms and σ (n) (n = 1,2,3, …) are the cumulants.  

For describing this anharmonic XAFS, an anharmonic interatomic effective potential [10,12] of 
the system is derived which in the present theory is expanded up to the 4th order and given by 
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Here effk is effective local force constant, and 3k  is the cubic parameter giving an asymmetry in 

the pair distribution function, x is deviation of instantaneous bond length between the two atoms from 
equilibrium. The correlated model may be defined as the oscillation of a pair of atoms with masses 
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1M  and 2M  (e.g., absorber and backscatterer) in a given system. Their oscillation is influenced by 

their neighbors given by the last term in the left-hand side of Eq. (15), where the sum i  is over 
absorber ( 1=i ) and backscatterer ( 2=i ), and the sum j  is over all their near neighbors, excluding 

the absorber and backsctterer themselves. The latter contributions are described by the term ( )xV . 

The advantage of this model is that the three-dimensional interactions can be taken into account in 
the present one-dimensional model by a simple measures based on including the contributions of 
nearest neighbors of absorber and backscatterer in XAFS process. 

For bcc crystals the anharmonic interatomic effective potential Eq. (15) has the form 
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Applying Morse potential given by Eq. (1) expanded up to the 4th order around its minimum 
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containing our calculated Morse potential parameters (MPP) to Eq. (16) and comparing that to the first 
equation of Eqs. (15), we obtain the anharmonic effective potential effV , effective local force constant 

effk , anharmonic parameters 43 , kk  for bcc crystals presented in terms of our calculated MPP D and α.  

3. Numerical results and discussion 

For calculating the above equations to obtain Morse potential parameters (MPP) of bcc crystals, 
we calculate the atomic number n in each elementary cell of bcc crystals.  

 

Fig. 2. Atomic distribution in an elementary cell of bcc crystal. 

From Fig. 2 it is evident that 1/8 atom in each of 8 vertexes and one atom in the centre are 
localized in an elementary cell of bcc crystal. Therefore, we obtain the value n = 2. Using the derived 
expressions in the previous section and this calculated parameter n, as well as the energy of 
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sublimation, the compressibility and the lattice constant from [18-20], we calculated Morse potential 
parameter D, α, ro  using our created computing programs. They have been used for calculating the 
anharmonic effective local force constants of bcc crystals. Table 1 show good agreement of the results 
calculated using the present theory with those of L. A. Girifalco et al [2] and with experiment of I. V. 
Pirog at al [17]. 

   Table 1. Morse potential parameters (MPP) D, α, ro calculated using the present theory and effective local force 
constants keff calculated using these MPP for Fe, W, Mo compared to those of L. A. Girifalco et al [2] and to the 

experimental values of I. V. Pirog et al [17]. 

Crystal D(eV) α (Å-1) 
or (Å) effk (N/m) 

Fe, Present 0.418 1.397 2.849 47.9242 
Fe, Girifalco et al [2] 0.417 1.388 2.845 47.2295 
Fe, Expt., Pirog et al [17] 0.42±0.12 1.40±0.13  2.856 48.3605 
W, Present 0.979 1.441 3.042 119.5910 
W, Girifalco et al [2] 0.9906 1.442 3.032 116.0254 
W, Expt., Pirog et al [17] 0.89±0.13   1.44±0.2 3.052 120.5995 
Mo, Present 0.8051 1.5102 3.012 107.8709 
Mo, Girifalco et al [2] 0.8032  1.5079  2.976 107.2888 
Mo, Expt., Pirog et al [17] 0.75±0.13  1.44±0.2  3.016 109.1992 

 

The Morse potentials calculated using the present theory presented in Fig. 3 for a) Fe and b) W are 
found to be in good agreement with experiment of I. V. Pirog et al [17] and with those calculated by L. 
A. Girifalco et al [2]. They satisfy all their fundamental properties, i. e., they describe the repulsive 
force in short distance when atoms approach each other obeying Pauli exclusion principle, and 
describe the attractive force in long distance when atoms go far from each other. The reason of this 
attraction is that the atoms have diffusion moments which attract each other in long distance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
                                  a)                                                                            b) 

 Fig. 3. Morse potentials of a) Fe and b) W calculated using the present theory compared to those calculated by 
L. A. Girifalco et al [2] and to the experimental values measured by  I. V. Pirog et al [17]. 
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a)                                                                             b) 

   Fig. 4. Anharmonic interatomic effective potentials for a) Fe and b) W calculated using the present theory and 
MPP presented in Table 1 and in Fig. 3, respectively, compared to experiment obtained from MMP of I. V. Pirog 

et al [17] and to those calculated from MPP of L. A. Girifalco et al [2]. 

Figure 4 illustrates good agreement of the anharmonic interatomic effective potentials for a) Fe 
and b) W calculated using the present theory and the MPP presented in Table 1 and in Fig. 3 with 
experiment obtained from the measured Morse parameters (MPP) of I. V. Pirog et al [17] and with 
those calculated from MPP of L. A. Girifalco et al [2]. They show strong asymmetry of these 
potentials due to including the anharmonic contributions in atomic vibrations of these bcc crystals 
illustrated by their anharmonic shifting from the harmonic terms. Such anharmonic effects of the 
anharmonic interatomic effective potentials lead to the shifts of the peaks of Fourier transform 
magnitudes of the experimental XAFS spectra of Fe at different temperatures [17] presented in Fig. 1. 

4. Conclusions 

In this work, a method for the calculation and analysis of Morse potential parameters for bcc 
crystals has been developed based on the calculation of volume per atom and atomic number in each 
elementary cell, as well as the energy of sublimation, the compressibility and the lattice constant. This 
method can be generalized to the other crystal structures based on the calculation of their volume per 
atom and atomic number in each elementary cell.   

The obtained Morse potentials satisfy all their fundamental properties and are suitable for the 
calculation and analysis of the anharmonic interatomic effective potentials describing anharmonic 
effects in temperature-dependent XAFS theory.  

The good agreement of the calculated Morse potentials of Fe, Mo, W and the anharmonic 
interatomic effective potentials of these elements calculated using their obtained Morse potential 
parameters with experiment illustrate the efficiency and reliability of the present theory in computing 
the interatomic interaction potentials, as well as the Morse potential parameters which are important 
for the calculation and analysis of physical effects in XAFS technique. 
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