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1Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3Tan Trao University, Tuyen Quang, Vietnam
4Food Industry University of HCM City, Ho Chi Minh City, Vietnam
5Faculty of Electric Technology and Electronics, Food Industry University of HCM City, Ho Chi Minh City, Vietnam
6Quantum Optics and Engineering Division, Institute of Physics, University of Zielona Góra, Prof. A. Szafrana 4a, 65-516 Zielona Góra, Poland
*Corresponding author: doanquockhoa@tdt.edu.vn

Received 20 February 2018; revised 24 April 2018; accepted 5 May 2018; posted 9 May 2018 (Doc. ID 324553); published 6 June 2018

We discuss the electromagnetically induced transparency (EIT) phenomenon for a model in which a structured
continuum is described by a so-called double Fano structure; instead of one autoionizing (AI) state, two such
states are embedded in a flat continuum. Such a Fano structure is the upper level of a Λ-like three-level system and
is coupled to two lower ones by an external laser field involving δ-correlated, Gaussian, Markov process (white
noise), simulating realistic conditions of the experiment. For such a system we derived and solved a set of coupled
stochastic integrodifferential equations in the stationary regime, obtaining exact formulas determining the electric
susceptibility of the system. Dispersion and absorption spectra of the medium susceptibility were calculated and
compared with those already discussed in the literature. We have shown that the presence of an additional AI level
considerably changes the structure of transparency windows and how noisy excitation influences the EIT
processes. © 2018 Optical Society of America
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Fluctuations, relaxations, and noise.
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1. INTRODUCTION

One of the basic axioms of quantum mechanics is the super-
position principle, which leads to quantum interference, the
source of numerous counterintuitive but very fascinating quan-
tum effects. One of the phenomena in which such interference
plays a crucial role is electromagnetically induced transparency
(EIT). In this phenomenon, a strong driving field interacts with
the medium in such a way that its optical properties are modi-
fied. As a result, the incident weak probe beam will pass
through the medium without being absorbed. It should be em-
phasized that EIT is a subject of intensive studies discussed in a
growing number of papers (for examples, see [1–10] and the
references quoted therein).

One can simply explain the EIT effect by taking one of the
basic configurations considered in the literature with three
discrete atomic levels, namely, Λ-type configuration. Such a
system consists of two lower bound states and one upper
excited one and initially is not transparent for an incoming

resonant probing laser beam, but becomes transparent under
the influence of another stronger control laser beam. The co-
herent interaction of the atomic system with two laser beams
leads to the creation of a so-called dark state, being a superpo-
sition of two lower states that do not couple with the upper one.
The destructive interference between two possible paths of ex-
citation appears, and then the atomic system does not absorb
the incoming radiation—the medium becomes transparent
for the probing beam. In consequence, the dispersive properties
of the considered system are controlled by the intensity of the
control laser beam. For such a situation, one can change the
group velocity of the probing pulse, with a possibility of com-
pletely stopping it for the storage of information when the con-
trol pulse is excluded. In the experiment of the Haus group in
1999 [9] for the gas of sodium atoms cooled to the temperature
of a few nanokelvin, the probing pulse was slowed to the veloc-
ity of 17 m/s. In 2001, this group was able to complete stop it
for the period of time 1.5 μs [11]. Thanks to this big progress in
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experimental techniques, such time of storage of the light pulse
has been enlarged to more than 1 s [12]. As the light slowing
the transition time through the medium becomes longer, so the
interaction time of light with the medium increases. Therefore,
it has also been observed [9] that such a medium is character-
ized by extremely large optical nonlinearities (giant Kerr non-
linearities), which has been predicted by Schmidt and
Imamoğlu [13]. In Ref. [9], the Kerr refractive index has been
calculated, showing that it can be a million times bigger than
that in cold cesium atoms and approximately 1013 times larger
than traditional ones. Such a medium can be treated as giving
new possibilities in experimental investigation in the field of
quantum optics [14]. The media described by giant Kerr non-
linearities are very interesting from the point of view of various
applications, in particular those related to quantum informa-
tion theory. For example, Imoto et al. [15] already proposed
the scheme of measuring the number of photons that does
not destroy their state (quantum nondemolition measure-
ment). Moreover, various maximally entangled states can be
generated in Kerr-like “couplers” (multimode systems involving
such huge nonlinearities that interact with each other and
whose evolution is governed by the same effective
Hamiltonians as usual optical couplers) [16–18] in the regime
of nonlinear quantum scissors [16].

Other quantum interference effects that have an even longer
history and through a long time period have been a central sub-
ject for quantum optical study; such studies relate to autoioni-
zation (AI) processes, where the possible quantum interference
paths connect both the discrete and continuum levels involved
in the considered system. AI systems have been studied in a
large number of publications since 1961, when Fano published
his classical paper [19]. Fano diagonalization based on the mix-
ing of ionizing levels with the continuum gives us the nontrivial
structure of the latter. Models containing several discrete levels
lying above continuum threshold (AI levels) have been the sub-
ject of numerous papers in atom-laser physics (see [19–35] and
the references quoted therein). These models are usually re-
ferred to as Fano systems and/or Fano-like systems. They
are also studied in more realistic models, where the driven
electromagnetic field involved a white-noise component, for
both the single [36] and double Fano profile [37]. They ap-
peared also in other physical situations, for example, in nano-
physics, metamaterials [38], in the description of quantum dots
[39–41], and in considering noninteracting waveguide arrays
[42]. Several review papers have been devoted to Fano-like
systems [43,44]. They are involved also in the papers
considering propagation of electromagnetic waves in atomic
media [45–47].

We know that a real laser is never perfectly monochromatic
—its field generally fluctuates in amplitude and phase. Because
the microscopic natural world is extremely complex, we model
it by classical stochastic processes, which are time-dependent.
The dynamical equations, which contain field parameters in-
volved in the considered problem, become stochastic differen-
tial equations. Obtaining exact solutions of such stochastic
equations is a very difficult task, except for some special cases
when, for example, the presence of white noise is assumed. As
was shown in Refs. [35,36], such modeling of a laser field with

application of stochastic processes can lead to various interest-
ing results. Moreover, models taking into account white noise
are interesting by themselves, because they describe electric
field amplitude of the multimode laser, operating without
any correlation between the modes.

EIT in a model of Λ-like system consisting of a continuum
coupled to an AI and two lower bound states has been consid-
ered in Ref. [48], where the analytic expressions for the suscep-
tibility for the case of bound-continuum dipole matrix elements
were modeled according to Fano theory [19]. Then, in
Ref. [48], the shapes of transparency windows depending on
the amplitude of the control field were considered. In our pre-
vious work [49], we extended the formalism introduced there
to the same Λ-like system, in which instead of the strictly
monochromatic control laser field, that perturbed by so-called
white noise was considered. It was shown there that the set of
coupled stochastic integrodifferential equations describing the
problem can be solved exactly. Obtained spectra of real and
imaginary parts of the medium susceptibility were calculated
analytically and compared to the results obtained in Ref. [48].

The model considered in Ref. [48] has been extended to the
case of double Fano structures [50], in which instead of one AI
state, we have two of them embedded in one continuum [51].
We have known that the appearance of an additional EIT win-
dow is due to the presence of the second AI level. Furthermore,
the characteristics of this window can be manipulated by
changes of the parameters describing AI levels and their inter-
action with external fields. In this paper, we use the same
method discussed in Ref. [49] and the model considered in
Ref. [51], in which a fluctuating control field is modeled by
white noise. In consequence, we solve exactly the set of coupled
stochastic integrodifferential equations describing the behavior
of our system. The spectra of dispersion and absorption parts of
the electric susceptibility are calculated and compared with the
results previously discussed in the literature. We show that for
the cases when the control field fluctuates, the structure of the
EIT windows changes dramatically.

Our paper is organized as follows: In the next section, some
details of our model are described, and the set of equations for
atomic operators involved in the problem is derived. In the
third part, our results are presented and discussed. The last
section contains conclusions.

2. MODEL OF THE Λ-LIKE THREE-LEVEL
SYSTEM WITH DOUBLE FANO STRUCTURE

In this paper, we consider the Λ-like system that is shown in
Fig. 1. This system includes two lower states, jbi and jci, the
flat continuum jEi, and two AI states, ja1i and ja2i, which are
coupled with the continuum by two couplings, U 1 and U 2,
respectively [50–53]. The continuum and the AI states are
coupled with discrete levels jci and jbi by strong control
and weak probe fields. They are described by amplitudes εd
and εp, and frequencies ωd and ωp, respectively. As usual in
the papers concerning AI phenomena, for simplicity the fre-
quency ωd is supposed not large enough to allow for the tran-
sition from the state jbi to the continuum, and level shifts are
ignored because of nonresonant couplings that can be taken
into account by redefining involved detuning. The appearance
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of the AI states may be alternatively taken into account by a
prediagonalization procedure that leads to a dressed continuum
jE� with a modified density of states [19].

Similarly, as in Ref. [49], we also suppose that the amplitude
of the driving field is

εd � ε0d � ε�t�, (1)

in which ε0d is a deterministic coherent part of the driving field
and ε�t� is characterized by a Gaussian, Markov, and steady
process (white noise):

hhε�t�ε��t 0�ii � a0δ�t − t 0�: (2)

The hhii in Eq. (2) is the notation of averaging over the
ensemble of realizations of the process ε�t�. By using the
Liouville–von Neumann equation in the rotating wave approxi-
mation (RWA) to depict the evolution of the atomic system
and applying the formalism of Fano diagonalization, we obtain
the set of the following equations for the density matrix ρ�z, t�:

iℏ_ρEb � �E − Eb − ℏωp�ρEb −
1

2
�E jd jbiεp

−
1

2
�E jd jci�ε0d � ε�t��ρcb,

iℏ_ρcb � �Ec � ℏωd − Eb − ℏωp − iℏγcb�ρcb
−
1

2
�ε0d � ε�t���

Z
hcjd jE�ρEbdE , (3)

where d is the electric dipole moment of the atomic system, γcb
denotes a phenomenological relaxation rate for the coherence
ρcb, and ρEb � �E jρjb�.

Thus, from Eqs. (1) and (2), we can see that Eq. (3) cor-
responds to the stochastic differential equation of the form

dQ
dt

� fM 1 � x�t�M 2 � x � �t�M 3gQ �M 4: (4)

Here, Q denotes a vector function of time, whereas Mi, i �
1, 2, 3, 4 are constant matrices. Next, we apply the well-known
multiplicative stochastic process theory result (see, for example,
Ref. [36]); we assume that the function hhQii satisfies the
nonstochastic equation of the form

d hhQii
d t

� �M 1 � a0fM 2,M 3g∕2�hhQii �M 4, (5)

with fM 2,M 3g denoting the anticommutator of M 2 and M 3.
From there, the set of equations for stochastic averages of the

variables are derived (for convenience, hhii have been dropped):

iℏ_ρEb � ��E − Eb − ℏωp� �
a0
8
�E jd jcihcjd jE��ρEb

−
1

2
�E jd jbiεp −

1

2
�E jd jcib0ρcb,

iℏ_ρcb � ��Ec � ℏωd − Eb − ℏωp − iℏγcb�

� a0
8
hcjd jE��E jd jci�ρcb −

1

2
b�0

Z
hcjd jE�ρEbdE , (6)

where b0 � jε0d j. We can get the density matrix elements nec-
essary for determination of the medium susceptibility by using
the solutions of Eq. (6).

3. MEDIUM SUSCEPTIBILITY SPECTRUM

We can obtain the medium susceptibility spectrum χ�ωp� from
the density matrix elements by applying the following relation:

P��ωp� � N
Z

dbEρEbdE � ε0εpχ�ωp�: (7)

HereN denotes the atom density, and ε0 is the vacuum electric
permittivity. From there, χ�ωp� has the form

χ�ωp�� −
N
ε0

�
K bb�

1
4b

2
0K

0
bcK cb

Eb�ℏωp −Ec −ℏωd − iℏγcb − 1
4b

2
0K cc

�
,

(8)

where the functions K ij�ωp� and K 0
ij�ωp�, i, j � b, c, have the

following form:

K ij�ωp�� lim
η→0�

Z hijd jE��E jd jji
Eb�ℏωp −E − a0

8 hcjd jE��E jd jci� iη
dE ,

(9)

K 0
ij�ωp� � lim

η→0�

Z hijd jE��E jd jji
Eb � ℏωp − E − a0

8 hcjd jE��E jd jci � iη

×
1

1� a0
8

hcjd jE��E jd jci
Ec�ℏωd −Eb−ℏωp−iℏγcb��1∕4�b20K cc

dE , (10)

and the limit η → 0� assures nonnegativity of the imaginary
part of susceptibility χ. We model the bound-dressed
continuum dipole matrix element the same as in Ref. [51]:

hjjd jE�
hjjd jEi

�
�E −E1��E −E2��E�q1jγ1�q2jγ2�− �E1q2jγ2�E2q1jγ1�

�E −E1��E −E2�− iE�γ1� γ2�� i�E1γ2�E2γ1�
,

(11)

where γ1 � πjha1jU 1jEij2 and γ2 � πjha2jU 2jEij2 are AI
widths, and as in Ref. [50], we have applied Fano asymmetry
parameters q1j and q2j, which can be expressed as

q1j �
hjjd ja1i

πhjjd jEihE jU ja1i
, q2j �

hjjd ja2i
πhjjd jEihE jU ja2i

,

j � b, c:
(12)

The function inside the integrals holds matrix elements corre-
sponding to the transitions to the structured continuum jE�.
We should use the formula (11) to get the explicit dependence

Fig. 1. Scheme of the levels and couplings.
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of the integrand on the energy because such elements are
energy-dependent. Therefore, K ij�ωp� and K 0

ij�ωp� can be
rewritten as

K ij�ωp�� lim
η→0�

DiDj

Z F i�E�F j�E�
Eb�ℏωp −E − a0D2

c
8 jF c�E�j2� iη

dE ,

(13)

K 0
ij�ωp� � lim

η→0�
DiDj

Z F i�E�F j�E�
Eb � ℏωp − E − a0D2

c
8 jF c�E�j2 � iη

×
1

1� a0D2
c

8
jFc�E�j2

Ec�ℏωd −Eb−ℏωp−iℏγcb��1∕4�b20K cc

dE , (14)

in which

F i�E� � �Qi � i�
�

1

Qi � i
� K �

j

E − E�
� K −

j

E − E−

�
,

F j�E� � �Qj − i�
�

1

Qj − i
� �K �

k ��
E − �E���

� �K −
k��

E − �E−��
�
: (15)

Appearing here, E	 denote the complex roots of the
denominator of Eq. (11), and they have the form

E	 � E1 � E2 	 K 1

2
� i

Γ	 K 2

2
, (16)

where

K 1 �
1ffiffiffi
2

p f��E2
21 −Γ2�2�4E2

21�γ2 − γ1�2�
1
2�E2

21 −Γ2g12,

K 2 �
1ffiffiffi
2

p f��E2
21 −Γ2�2�4E2

21�γ2 − γ1�2�
1
2 −E2

21�Γ2g12: (17)

The parameters K 	
j are the complex amplitudes, which are

given by the formula as

K 	
j � Γ

2

�
1	 E21Lj � iΓ

K 1 � iK 2

�
, (18)

with

Lj �
Qj21 � iΓ21

Qj � i
: (19)

We have introduced here the separation between two AI
levels E21 � E2 − E1, and effective asymmetry parameters
Qj, Qj21, Γ21, and AI width Γ are given by the following
formulas:

Qj �
q1jγ1 � q2jγ2

Γ
,

Qj21 �
q2jγ2 − q1jγ1

Γ
, j � b, c, (20)

Γ � γ1 � γ2, Γ21 �
γ2 − γ1

Γ
: (21)

Furthermore, the matrix elements of the dipole moment
transition hijd jEi and hE jd jji are denoted by Di and Dj,
respectively.

If we omit threshold effects, we can extend the integration
limits K ij�ωp� and K 0

ij�ωp� from minus to plus infinities and

obtain the analytical solutions for those parameters. From
there, we can derive the electric susceptibility χ.

From the above formulas, we can compute numerically the
medium susceptibility χ�ωp� in the stationary regime, which
means that the time derivatives appearing in Eq. (6) are equal
to zero. We do not present the form of the final solution here
because it is very intricate and unreadable. These results will be
discussed in a graphical form in the next figures.

We suppose the same values for the parameters depicting an
atomic system and its interaction with external fields to com-
pare the results in this paper with those in Refs. [49,51].
Therefore, we put for Γ � 10−9 a:u:, Db � 2 a:u:, and Dc �
3 a:u: Moreover, the values of the parameter b0 range from
10−9 to 10−6 (all parameters used here are in atomic units).
In addition, N � 0.33 × 1012 cm−3, the asymmetry parame-
ters are of the order of 10–100. γcb is omitted, and detuning
ω has the form ω � ωp � �Eb − E1�∕ℏ. Finally, we assume
that the parameters describing the AI level decay are identical
(Γ21 � 0 and Qj21 � 0 for j � b, c).

The spectra of dispersion (real) and absorption (imaginary)
components of the susceptibility for different values of the
parameters are shown in Figs. 2–7.

We now discuss two interesting limits: weak and strong
fluctuations of the laser field.

For the case of weak fluctuations, if the coherent component
of the light dominates over the fluctuations, then we can
suppose that the fluctuation component of the field amplitude
is zero �a0 � 0�, so our results become exactly the same as
those from Ref. [51]. Actually, we see that for the case
E21 � 0, we get the same result as for the model with a single
AI level discussed by Raczyński et al. [48]. Moreover, for the
case E21 → 0, our result becomes exactly the same as that ob-
tained in Ref. [54]. The dispersion and absorption components
of the medium susceptibility without a fluctuations component
are shown in Figs. 2 and 3 and have been already discussed in
detail in Ref. [51]. Indeed, we see that the model discussed here
naturally reduces to that of Bui Dinh et al., when the additional
EIT window appears.

Figure 2 shows the dispersion and absorption components
of the medium susceptibility for different strengths of control
field intensity b0 when the fluctuations part is absent. We can
see that changes of b0 can influence the depths and widths of
the transparency windows; namely, when the value of b0
increases, the depths of the transparency windows decrease,
whereas their widths increase. In addition, the widths of the
first windows on the left increase considerably in comparison
to those of the second windows on the right. Moreover, the
spectral positions of the EIT windows remain unchanged.

In Fig. 3, we show the spectra of real and imaginary com-
ponents of the medium susceptibility for various values of the
separation of energies E21 of two AI levels. When E21 � 0,
only an EIT window appears in the spectra, but if E21 ≠ 0,
two EIT windows occur in it. The mechanism leading to
the transparency window for the weak probe beams appears
because quantum interference of the probability amplitudes
for these two transition pathways from the ground state
to the final state via each of the resonances of AI level (ja1i
or ja2i) with the configuration interaction (U 1 or U 2),
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respectively, is destroyed. It has been shown that the presence of
an arbitrary additional AI level results in new quantum
interference phenomena, which can induce an additional
EIT window. Thus, a second transparency window originating
in the presence of the second AI level has been revealed. We can
see that the position of additional window changes according to
the energy of the second AI level when values of E21 change,
and the larger the E21, the more distant the second transpar-
ency window is from the first one; namely, when the values of
E21 increase, the distance of the second EIT window from the
first window also increases in the same amount of time. This
means that increase of the distance of the second window from
the first window is proportional to the increase of values of E21.
Furthermore, when E21 increases, the spectral position and
width of the first transparency window remain almost un-
changed, whereas the width of the spectral of the second trans-
parency window increases. If values of the difference E21 are

sufficiently large, the second window becomes even broader
than the first window.

For the case of strong fluctuations of the laser field, we have
now the situation when the coherent component of the strong
control field is inconsiderable (b0 � 0) in comparison to the
chaotic component. Then the light is pure noise, so we
can rewrite χ�ωp� in the form

χ�ωp� � −
N
ε0

K bb: (22)

Figure 4 shows the real and imaginary components of the
medium susceptibility for the cases without the control field or
when only the chaotic component of the control field is
present. We can see in Fig. 4 that one of two dispersion curves
and absorption windows disappears, because in the absence of
the control field or when the strong control field fluctuates, the
quantum interferences for the appearance of one of the two
dispersion curves or EIT windows are weakened. When the
chaotic component is present, the slopes of the dispersion curve
and absorption profiles drop. In addition, when the chaotic

Fig. 3. (a) Dispersion and (b) absorption parts of the medium sus-
ceptibility as a function of ω∕Γ. The parameters are Qb � Qc � 10,
Γ � 10−9 a:u:, b0 � 4 × 10−7 a:u:, a0 � 0. Dotted lines, E21 � 0;
dashed dotted lines, E21 � 0.45Γ; dashed lines: E21 � 0.9Γ; solid
lines, E21 � 1.35Γ.

Fig. 2. (a) Dispersion and (b) absorption parts of the medium sus-
ceptibility as a function of ω∕Γ. The parameters are Qb � Qc � 10,
Γ � 10−9 a:u:, E21 � 0.8Γ, a0 � 0. Dashed dotted lines,
b0 � 10−7 a:u:; dashed lines, b0 � 5 × 10−7 a:u:; solid lines,
b0 � 9 × 10−7 a:u:
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component exists, the transparency window shifts to the right;
namely, when the fluctuations component increases many
times, the transparency window is shifted to the right the same
number of times in comparison with the case when the chaotic
component is absent. That means a shift in the position of the
transparency window is proportional to the increase of the
fluctuations component. This effect was discussed by Doan
Quoc et al. [49] for the case of a single AI level.

However, for the general case, not only the coherence com-
ponent of the strong control field amplitude exists, but the fluc-
tuating component also plays a significant role. The dispersion
and absorption parts of the medium susceptibility for such cases
are presented in Figs. 5 and 6. If, additionally, we assume that
AI levels are of equal energy �E1 � E2�, our result becomes
exactly the same as that obtained by Doan Quoc et al. [49].
In addition, for the case E21 → 0, we get the same result as
for the model with two AI levels of the same energy shown
in Ref. [55]. These results have been already discussed in detail
in Refs. [49,55]. Indeed, we see that for such a case, the model
discussed here reduces to that of Refs. [49,55].

Figure 5 presents the dispersion and absorption parts of the
medium susceptibility as functions of ω∕Γ for the case when
E21 � 0.4Γ with different values of the fluctuation compo-
nent. If the chaotic component is absent, our result becomes

exactly the same as that obtained in Ref. [51]. When the
chaotic component is present, the spectrum contains two trans-
parency windows, but the slope of the dispersion curve and
absorption profiles drops. Moreover, the zero point shifts to
the right when the chaotic component exists.

In Fig. 6, we show the dispersion and absorption parts of the
medium susceptibility as functions of ω∕Γ for the case E21 �
0.8Γ with different values of the fluctuation component when
the chaotic part is absent or present. When the chaotic part is
absent, our results become also exactly the same as those
discussed in Ref. [51]. When the chaotic part is present, we
also find that the left peaks of dispersion and left absorption
profiles drop faster than others. Moreover, the width of the sec-
ond transparency window increases and the slope of the second
dispersion curves decreases in comparison with the results de-
scribed in Fig. 5 for the case E21 � 0.4Γ. Furthermore, the
transparency window also shifts to the right from the zero
frequency.

The weak probe beam, which has group velocity, depends
on both the group index, and its changes are related to the
derivative of Re χ�ωp� for the weak probe beam frequency.
This fact can be expressed the same as in Ref. [48]:

ng � 1� ωp

2

d
dωp

Re χ�ωp�: (23)

Fig. 4. (a) Dispersion and (b) absorption parts of the medium sus-
ceptibility as a function of ω∕Γ. The parameters are Qb � Qc � 10,
Γ � 10−9a:u:, E21 � 0.8Γ, b0 � 0. Dashed dotted lines, a0 � 0;
dashed lines, a0 � 0.0025Γ; solid lines, a0 � 0.005Γ.

Fig. 5. (a) Dispersion and (b) absorption parts of the susceptibility
as a function of ω∕Γ and the coherent part b0 � 4 × 10−7a:u:, Γ �
10−9a:u: and Qb � Qc � 10, E21 � 0.4Γ. Dashed lines, a0 � 0;
solid lines, a0 � 0.0025Γ.
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Then, expression of the group velocity has the following form:

vg �
c
ng

, (24)

where c is the speed of light in vacuum. Hence, if the slope of
the dispersion curves increases, then the group velocity of light
decreases.

In Fig. 7, we show in detail the relation between the slope of
dispersion curves and the group velocity of light in which the
tangent equations corresponding to the curves with
E21 � 0.6Γ, E21 � 1.2Γ, and E21 � 1.8Γ at the coordinates
(0.3, 0), (0.6, 0), and (0.9, 0) have the form

y1 � 9.302325580 × 10−9ω − 2.790697674 × 10−9, (25a)

y2 � 2.272727273 × 10−9ω − 1.363636364 × 10−9, (25b)

y3 � 0.941176470 × 10−9ω − 0.847058823 × 10−9: (25c)

We can see that the slope of dispersion curves decreases when
the values of E21 increase. It follows that the slope of the tan-
gents and the group index increase when the values of E21 de-
crease. Thus, the group velocity of light decreases when the
group index increases. From Eq. (25), we can see that the slope

of Eq. (25a) is 4 times larger than the slope of Eq. (25b) and is
approximately 10 times greater than the slope of Eq. (25c).
Therefore, the group velocity of light of Eq. (25a) will decrease
approximately 4 times and 10 times compared with the group
velocity of light in Eqs. (25b) and (25c), respectively.

4. SUMMARY

In the present study, we have presented the atomic model of a
Λ-like system that is the so-called double Fano continuum, in
which instead of one AI level, we have two AI levels embedded
in the flat continuum [51]. As in Ref. [36], we also suppose that
the laser light of the strong control fields applied in this system
is decomposed into two parts: a deterministic component (co-
herent component) and a randomly fluctuating chaotic part
(white noise). By solving a set of stochastic integrodifferential
equations involved in the problem, we derived a system for the
steady solution for the medium susceptibility. Next, the exact
expressions of the dispersion and absorption spectra of the
electric susceptibility were obtained, and we compared
them with those obtained in Ref. [51]. The EIT phenomenon
also exists for the Λ-like systems considered in the present
work. In addition, not only the position but also the width
of the transparency window changes dramatically in compari-
son with the case when the noise of the strong control field is
absent.

Similar to the case discussed in Ref. [49], because the am-
plitudes of the real laser light, which in experimental setups
always contain some fluctuating part, so we have confidence
our model is more realistic than that described by Bui Dinh
et al. [51].

Funding. Vietnam National Foundation for Science
and Technology Development (NAFOSTED) (103.03-
2017.28).

Fig. 6. (a) Dispersion and (b) absorption parts of the susceptibility
as a function of ω∕Γ and the coherent part b0 � 4 × 10−7a:u:, Γ �
10−9a:u: and Qb � Qc � 10, E21 � 0.8Γ. Dashed lines, a0 � 0;
solid lines, a0 � 0.0025Γ.

Fig. 7. Dispersion parts of the medium susceptibility and their
tangents y1, y2, and y3 with the coordinates (0.3, 0), (0.6, 0), and
(0.9, 0), respectively. The parameters are Qb � Qc � 10,
Γ � 10−9a:u:, b0 � 4 × 10−7a:u:, a0 � 0. Dashed dotted lines,
E21 � 0.6Γ; dashed lines, E21 � 1.2Γ; solid lines, E21 � 1.8Γ.
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