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A B S T R A C T

The pressure effects on atomic mean-square displacement, extended X-ray absorption fine structure (EXAFS)
Debye-Waller factor and melting temperature of solid krypton have been investigated in within the statistical
moment method scheme in quantum statistical mechanics. By assuming the interaction between atoms can be
described by Buckingham potential, we performed the numerical calculations for krypton up to pressure
120 GPa. Our calculations show that the atomic mean-square displacement and EXAFS Debye-Waller factor of
krypton crystal depend strongly on pressure. They make the robust reduction of the EXAFS peak height. Our
results are in good and reasonable agreements with available experimental data. This approach gives us a re-
latively simple method for qualitatively calculating high-pressure thermo-physical properties of materials.
Moreover, it can be used to verify future high-pressure experimental and theoretical works.

1. Introduction

In recent years, high-pressure physics is motivated by the remark-
able developments of experimental techniques. Researchers could uti-
lize various methods to investigate the thermo-mechanical properties of
materials at high pressures (up to hundreds of gigapascals) [1–3]. Rare
gases are among the most widely interested materials, both experi-
mentally and theoretically. Firstly, because of their relatively simple
system with closed-shell electronic configuration, they are the best
candidates for model verification. Secondly, the high-pressure ther-
modynamic properties of rare gases are of important information for
geophysical research (e.g, the unexpectedly low absolute abundance of
xenon observed in the atmospheres of both Earth and Mars, especially,
the composition, structure and formation of Earth as well as planetary)
[4]. Furthermore, rare gases have been extensively used as a pressure
medium in high-pressure diamond anvil cell (DAC) experiments. Re-
cently, the properties of solid krypton has been measured to very high
pressure by in situ X-ray diffraction (XRD) and extended X-ray

absorption spectroscopy, about 140 GPa [5]. Therefore, building a
theory to determine the thermodynamic properties of solid rare gases
under high pressure is the inspiring subject in physics.

Many previous X-ray diffraction studies suggested that solid krypton
crystallizes in the face-centered cubic (FCC) structure and it is predicted
to remain stable in FCC structure up to pressure 110 GPa [6]. On the
theoretical side, the first-principles total energy calculations figured out
the FCC-to-hexagonal close-packed (HCP) transition in Kr occurring
above 130 GPa [7]. Its equation-of-state (EOS) PVT relationship has
been derived by many authors with different approaches such as X-ray
absorption spectroscopy measurements up to 140 GPa [5,8,9] and en-
ergy-dispersive X-ray techniques up to 55 GPa [4,10–12]. Along with
the X-ray absorption spectroscopy measurements, the pressure effects
on the extended X-ray absorption fine structure spectroscopy (EXAFS)
Debye-Waller factor of Kr have been investigated experimentally as
well as theoretically up to pressure about 30 GPa [8,9]. And moreover,
the pressure-dependent melting curve of Kr crystal has been derived by
several authors up to 120 GPa [4,13,14].
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In this work, based on the statistical moment method (SMM) in
quantum statistical mechanics [15,16], we investigate the pressure ef-
fects on the EXAFS Debye-Waller factor and melting curve of solid
krypton. The pressure-dependent atomic mean-square displacement
(MSD) 〈 〉u2 and SMM EOS have also been considered. Numerical cal-
culations will be performed for a wide pressure range. We compared all
of our determinations with recent experimental and theoretical studies
as applicable.

2. Theory

2.1. Brief report of statistical moment method

In the first part of the paper, we summarized some main formula of
thermodynamic properties which had been derived for crystalline ma-
terials in within of the SMM scheme. Let us assume the interatomic
potential between two intermediate atoms could be described by φ r( )ij
function. By expanding the potential energy +φ r u(| |)i i i0 up to fourth-
order of the atomic displacement ui, the author derived the force bal-
ance relation as the differential equation of the first-order moment

≡ 〈 〉y ui p [17].
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where =θ k TB (kB is the Boltzmann constant, T is the absolute tem-
perature), =x ω θℏ /2 , =X x xcoth , p is a supplementary force acting on
the zeroth central atom in the lattice due to the thermal lattice vibration
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The solution of differential equation (1) gives us the average atomic
displacement y T( ) which takes into account the anharmonicity effects
of thermal lattice vibrations at temperature T as [15,18].
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here a1, a2, a3, a4, a5, and a6 are temperature-dependent parameters
which were correspondingly defined as [15].
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The average nearest-neighbor distance (NND) between two inter-
mediate atoms at temperature T can be calculated as the following

= +r T r y T( ) (0) ( ),0 (9)

where r (0) is the value of NND r at zero temperature. The value of r (0)
can be determined from the minimum condition of the potential energy
of crystal or by solving the SMM EOS that will be presented in the next
subsection 2.3.

2.2. EXAFS Debye-Waller factor of krypton

In structural research, one of the most effective methods for in-
vestigation the structure and thermodynamic properties of crystals is
EXAFS [19]. The anharmonic EXAFS provides information on structure
and thermodynamic parameters of substances and usually has been
analyzed by means of cumulant expansion approach [19,20]. The
EXAFS oscillation function contains the second cumulant =σ σ(2) 2

which is an important factor in EXAFS analysis since the thermal lattice
vibrations influence sensitively the EXAFS amplitudes through the
Debye-Waller factor − σ kexp( 2 )2 2 . The second cumulant corresponds to
the parallel mean square relative displacement (MSRD) or EXAFS
Debye-Waller factor, which is defined as:
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Here, u0 and ui are the atomic displacements of the zeroth and the ith
sites from their equilibrium positions;

→
R is the unit vector at the zeroth

site pointing towards the ith site, and the brackets denote the thermal
average. The first two terms on the right-hand side of Eq. (10) are the
uncorrelated MSD, while the third term is the parallel displacement
correlation function.

In SMM theory, the relation between the first and the second order
moment of atomic displacements is described as [18].
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where =α γ x y z, , , .
Then the atomic MSD function can be easily derived as follows
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For crystals that have a basic cubic structure, such as FCC, any di-
rectional dependence of 〈 〉u2 must have cubic symmetry. Hence, in this
sense we have approximations as
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Then we derive the expression of parallel MSRD or EXAFS Debye-
Waller factor of cubic crystal as the following
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2.3. High-pressure thermodynamic quantities

In order to consider the pressure effects on thermodynamic prop-
erties of materials, we need a precise EOS. In previous study of SMM
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theory [16], the authors derived EOS which describes the pressure
versus volume relation of crystal lattice as
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where P denotes the hydrostatic pressure, v is the atomic volume
=v V N/ of a crystal having volume V and N atoms, and U0 is the total

potential energy of system.
By solving the above EOS we obtain the NND r P T( , ) between two

intermediate atoms at pressure P and temperature T. Substituting the
obtained r P T( , ) into Eqs. (2a), (2b), we find the quantities k P T( , ) and
γ P T( , ). Using Eqs. (4), (12) and (14), respectively, we derive the values
of the thermally induced lattice expansion y P T( , )0 , the atomic MSD
〈 〉u P T( , )2 and the parallel MSRD σ P T( , )2 of cubic crystals at pressure P
and temperature T as
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The change of the crystal volume and Lindemann melting ratio
ξ P T( , ) at pressure P and temperature T can be now determined, re-
spectively, as
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3. Numerical calculations and discussion

For numerical calculations, the interatomic potential φ r( ) between
two intermediate atoms of Kr crystal is assumed as Buckingham (exp-6)
pair potential as follows
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where Ec is the cohesion energy, r0 is the equilibrium nearest-neighbor
distance, and α is parameter which is associated with the bulk modulus.
For solid Kr crystal, the Buckingham potential parameters are, respec-
tively, =E k175.0c B, =r 4.120 Å and =α 12.5 [14]. Experimental mea-
surement of melting temperature of solid Kr at ambient pressure is

=T 115.79m0 K.
In this work, the interaction energy of system is calculated by the

coordination sphere method. The radius of the k-th coordination sphere
is determined by rk = ν ak 0, in which =a r0 1 is radius of the first co-
ordination sphere. If we take into account the interaction of particles
being on first five coordination spheres, the total potential energy U0 of
system has the form as
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with the expressions of Ae and A6 are respectively

= + ⎡⎣
− ⎤⎦

+ ⎡⎣
− ⎤⎦

+

⎡⎣
− ⎤⎦

+ ⎡⎣
− ⎤⎦

A z z α ν z α ν

z α ν z α ν

exp (1 ) exp (1 )

exp (1 ) exp (1 ) ,

e
a
r

a
r

a
r

a
r

1 2 2 3 3

4 4 5 5

0
0

0
0

0
0

0
0 (24)

and

= + + + +A z z
ν

z
ν

z
ν

z
ν

,6 1
2

2
6

3

3
6

4

4
6

5

5
6 (25)

where zk is the number of particles being on the k-th coordination
sphere with radius rk. For the FCC lattice, we have =ν 11 and =z 121 ,

=ν 1/ 22 and =z 62 , =ν 1/ 33 and =z 243 , =ν 1/24 and =z 124 ,
=ν 1/ 55 and =z 245 .
Before considering the pressure effects on EXAFS DWF and melting

temperature of krypton, we firstly verify the precision of EOS derived in
within the SMM scheme. Substituting total potential energy U0 into Eq.
(15) and solving this equation, we derive the values of NND a P T( , ),
and then the change of volume V V/ 0, at pressure P and temperature

=T 300 K. In Fig. 1, the change of volume V V/ 0 of krypton crystal with
pressure at room temperature up to 120 GPa has been shown. Experi-
mental data measured by high-resolution angle-dispersive synchrotron
XRD by Errandonea et al. [12], in situ XRD and absorption by Rosa et al.
[5] and the fitted Birch-Murnaghan isothermal EOS [5] have been
shown for comparison. As it can be seen from this figure, the SMM EOS
for solid Kr is in fair agreement with measurements to the highest ex-
perimental pressures, and consequently we can use the derived values
of lattice constant for further investigation.

3.1. Pressure-dependent EXAFS Debye-Waller factor of krypton

In Fig. 2, we present the pressure effects (up to 50 GPa) on the
atomic MSD of Kr crystal at temperature 300 K. The results of Monte-
Carlo (MC) simulation based on empirical pair potentials [9] have also
shown for comparison. The good agreement between our SMM calcu-
lations and MC simulation results could be observed. As we can see
from this figure, the atomic MSD drops rapidly with the increasing of
pressure, especially, below 5 GPa. From this result we can deduce that
Kr crystal is relatively soft up to pressure 5 GPa and its volume will be
changed rapidly under pressure range 0–5 GPa which can be verified by
observing Fig. 1 above.

The pressure dependence (up to 50 GPa) of the MSRD or EXAFS
Debye-Waller factor of Kr crystal at temperature 300 K has been dis-
played in Fig. 3. Our SMM calculations are consistent with previous
results, especially, with values calculated by the MC simulations [9]

Fig. 1. Evolution of volume compressibility V V/ 0 of solid Kr with pressure.
Recent experimental measurements [5,12] and the fitted Birch-Murnaghan
isothermal EOS [5] have been shown for comparison.
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and experimental measurements [9]. When the pressure increases, the
MSRD of Kr crystal is going to decrease quickly. It is because of the
limitation of atom fluctuation in crystal under high pressure. The re-
ducing of EXAFS Debye-Waller factor predicts the decreasing of EXAFS
signals when pressure increases. As we can see from Figs. 2 and 3, both
quantities MSD and MSRD have identical reaction under pressure. They
both drop rapidly with the increasing of pressure, especially, below
5 GPa.

3.2. High-pressure melting curve of krypton

In this subsection, the pressure effects on melting curve of Kr crystal
is investigated by using the modified Lindemann criterion [21]. The
Lindemann melting criterion was first proposed by Lindemann in 1910
that a material initiates melting process when the ratio = 〈 〉ξ u r/2

between square root of atomic mean-square vibration 〈 〉u2 and NND r
reaches a threshold value ξ0 [22]. Using the Lindemann criterion, the
investigation of pressure-dependent melting temperature of materials
has been performed by a lot of authors [23,24]. However, the authors
showed that the classical Lindemann criterion is just useful for pre-
dicting melting points of crystalline materials under low pressure.
When pressure increases (about pressure ≥P 20 GPa), results obtained
from this model are not really good and are lower than those obtained
from experimental measurements, theories and simulation calculations.

In this paper, in order to calculate melting temperature of Kr crystal
under pressure we use the modified Lindermann criterion which was
applied effectively to evaluate the melting temperatures of a series of
transition metals under high pressure [21]. The modified Lindermann
criterion is based on the assumption that the ratio = 〈 〉ξ u r/2 remains
constant for all range of studied pressure.

There are a number of published literatures concerning with the
melting phenomenon of Kr crystal including experiments together with
calculations. Its melting temperature was experimentally measured in a
laser-heated DAC detected with the laser speckle method by Boehler
et al. [13] up to pressure 61 GPa and by Jephcoat [4] at 23 GPa. On the
theoretical side, the joint molecular dynamics (MD) simulations of the
solid and the liquid phases sharing an interface, so-called the moving
interface method, with the many-body potential and Buckingham pair
potential were performed to investigate the melting curve of Kr up to
pressure 120 GPa by Pechenik et al. [14].

In Fig. 4, the melting curve of Kr crystal calculated by SMM using
Buckingham pair potential and compared to other theoretical and si-
mulation calculations, and experimental measurements is shown. As it
can be seen from this figure, our melting curve well reproduces the
experimental measurements [4,13] up to the cusp reported by Boehler
et al. [13]. Comparing to experiment of Boehler et al. [13], up to
pressure 30 GPa, the error of melting temperature in SMM calculation is
about 5%. At higher pressures, the appearance of discrepancy starts to
be observed, with the calculated melting curve being increasingly
higher than the experimental data. Our SMM calculations do not re-
produce the cusp and the experimental melting points above it. Com-
pared to the calculations by MD simulations of Pechenik et al. [14], our
results are significantly higher than those of melting curves calculated
with the many-body potential and Buckingham pair potential [14],
especially, above pressure 20 GPa. The slope of melting predicted by
corresponding method at 20 GPa is ∼dT dP/ 66 K/GPa, while the
average melting slope for the pressure range 20–120 GPa is ∼dT dP/ 41
K/GPa.

In our opinion, the difference between present calculations and
experimental measurements can be simply explained as: (i) the de-
pendence of numerical results on empirical potential used. In present
paper, the author assumed the interatomic interactions as the empirical
Buckingham pair potential form which could not be strictly appropriate
for the complex interactions in Kr crystal at high pressure. The em-
bedded atom model based many-body potential should be more suitable
for rare gases [14]. Nevertheless, Pechenik et al. [14] also proposed the

Fig. 2. High-pressure MSD of Kr. The Monte-Carlo simulations results [9] are
shown for comparison.

Fig. 3. High-pressure EXAFS DWF of Kr crystal. Other calculations and mea-
surements [8,9] are shown for comparison.

Fig. 4. The high-pressure melting curve of Kr crystal calculated by SMM (solid
line). Closed circles represent the experimental data of Boehler et al. [13] and
empty diamond represents melting measurement of Jephcoat and Besedin [4].
Pechenik et al.’ calculations [14] using the many-body model (filled triangles)
and the Buckingham potential (stars) have also shown for comparison.
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impossibility to reproduce both the EOS and the melting line with the
same set of pair-potential parameters at high-enough pressures. (ii) the
lack of paying attention to electron configurations of krypton. Experi-
mentally, Boehler et al. [13] reported a considerable decrease in the
melting slopes of Kr starting near 30 GPa, leading to the creation of
cusp. According to Ross et al. [25], the steep lowering of the melting
slope results from the formation of clusters in the liquid having icosa-
hedral short-range order because of the hybridization of the 5p-like
valence and 5d-like conduction states. As a consequence of it, in order
to describe exactly high-pressure melting curve, the SMM approach
needs to carefully pay attention to electronic properties of material.

4. Conclusions

In this work, the pressure effects on atomic mean-square displace-
ment, EXAFS Debye-Waller factor and melting temperature of solid
krypton have been investigated up to 120 GPa by means of the statis-
tical moment method in statistical mechanics which has taken into
account the anharmonicity effects of thermal lattice vibrations. Our
numerical calculations are in good and reasonable agreements with
available experimental data. Our work shows that the atomic mean-
square displacement and EXAFS Debye-Waller factor of krypton crystal
depend strongly on pressure, especially, at pressure below 5 GPa. About
the pressure dependence of melting curve, our approach based on the
modified Lindemann melting criterion can be suitable for evaluating
the melting of Kr crystal up to 30 GPa. At higher pressure, SMM cal-
culations do not reproduce the cusp and the experimental melting
points above it. This approach gives us a relatively simple method for
qualitatively calculating high-pressure thermo-physical properties of
materials. Moreover, it can be used to verify future high-pressure ex-
perimental and theoretical works.
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