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A B S T R A C T

The thermodynamic properties and anharmonic perturbation factor of orderly doped crystals are described in
terms of the cumulants in extended X-ray absorption fine structure (EXAFS) spectra. The thermodynamic
parameters and cumulants are studied based on the anharmonic correlated Einstein model. We derive analytical
expressions for the dispersion relation, the correlated frequency and Einstein temperature, and the EXAFS cu-
mulants. Parameters of the Morse potential, thermal expansion coefficient due to effect of anharmonicity, an-
harmonic factor, the EXAFS phase including the anharmonic effects depend on doping ratio of cubic-structure
crystals are considered. The derived anharmonic effective potential includes the contributions of all the nearest
neighbors of the absorbing and scattering atoms to account for three-dimensional interactions and the para-
meters of the Morse potential to describe single-pair atomic interactions. Numerical results for face-centered
cubic (fcc) crystals of copper (CueCu) and silver (AgeAg) and their compound AgeCu agree reasonably with
experiments and other theories.

1. Introduction

To study how the cumulants, thermal parameters, and thermo-
dynamic properties of lattice crystals of a substance depend on the
temperature and their doping ratio (DR), in previous studies we have
used extended X-ray absorption fine structure (EXAFS) spectra, an ap-
proach that has developed into a powerful probe of the atomic struc-
tures and thermal effects of substances [1,3,4,6–11]. The functions of
EXAFS spectra provide information about the atomic number of each
shell, and their Fourier magnitudes provide information about the ra-
dius of this atomic shell [1,4,8,9]. The thermodynamic parameters and
the EXAFS cumulants up to third order have been derived for pure cubic
crystals by using the anharmonic correlated Einstein model (ACEM) in
EXAFS theory [7,9]. However, the thermodynamic parameters, cumu-
lants, anharmonic perturbation factor, and thermal expansion coeffi-
cient for doped face-centered cubic (fcc) crystals, such as crystals of
copper (Cu) doped with silver (Ag) (AgeCu), are yet to be determined.

In the present study, we use the anharmonic effective Einstein po-
tential in EXAFS theory [7] to formulate thermodynamic parameters
such as the effective force constant, anharmonic factor, thermal ex-
pansion coefficient, cumulant expressions, and some other parameters
such as the correlated Einstein frequency and correlated Einstein

temperature that are contained in the EXAFS spectra. In this study, the
AgeCu doped crystals contain Ag atoms (referred to as the substitute
atoms) and Cu atoms (referred to as the host atoms). Numerical cal-
culations have been conducted for AgeCu doped crystals to show the
thermodynamic effects and how they depend on the DR and tempera-
ture of fcc crystals. The calculated results are in good agreement with
those of other studies [2,5,7,8].

2. Formalism

An anharmonic EXAFS spectrum is often expressed as [4,7].

∑⎜ ⎟= ⎛
⎝

− ⎞
⎠

⎛

⎝
⎜

⎛

⎝
⎜ + ⎞

⎠
⎟

⎞

⎠
⎟χ k

S N
kR

F k R
λ k

e ikr ik
n

σ T( ) ( )exp 2
( )

Im exp 2 (2 )
!

( ) ,iΦ k

n

n
n0

2

2
( )

0
( )

(1)

where S0
2 is the intrinsic loss factor due to many electron effects, N is

the atomic number of a shell, F k( ) is the atomic backscattering am-
plitude, Φ k( ) is the total phase shift of the photoelectron, k and λ are
the wave number and mean free path of the photoelectron, respectively,
and σ n( ) =n( 1, 2, 3, 4...) are the cumulants and describe the asym-
metric components of the interactive potential. The latter are due to the
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thermal average of the function −e ikr2 , in which the asymmetric terms
are expanded as a Taylor series around = < >R r , where r is the in-
stantaneous bond length between absorbing and scattering atoms at
temperature T .

In the ACEM, [7,8] the effective interaction between absorbing and
scattering atoms with contributions from the atomic neighbors is
characterized by an effective potential. To determine the Debye–Waller
factor (DWF) in terms of the cumulants, it is necessary to specify the
interatomic potential and force constant. Consider a high-order ex-
panded anharmonic interatomic effective potential expanded up to
fourth order, namely

≈ + + +U x k x k x k x( ) 1
2

...eff eff eff
2

3
3

4
4

(2)

with net deviation = −x r r0, where r is the spontaneous bond length
between absorbing and backscattering atoms and r0 is its equilibrium
value. In Eq. (2), keff is an effective spring constant that includes the
total contribution of the neighboring atoms, and k eff3 and k eff4 are ef-
fective anharmonicity parameters that specify the asymmetry of the
anharmonic effective potential.

The effective potential given by Eq. (2) is defined based on an as-
sumption in the orderly center-of-mass frame of a single-bond pair of an
absorber and a bacskcatterer [7,8]. For monatomic crystals, the masses
of the absorber and backscatter are the same, so the effective potential
is given by
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where the first term on the right-hand side, namely U(x), concerns only
absorber and backscatter atoms. The sums extend over their nearest
neighbors, and the second equality is for the fcc structure of Cu orderly
doped with Ag. Therefore, this effective pair potential describes not
only the pair interaction of the absorber and backscatter atoms them-
selves but also how their near-neighbors atoms affect such interaction.
It is the difference between our effective potential and the single-pair
potential [6] and single-bond potential, [1] which concern only each
pair of immediate neighboring atoms (i.e., only U(x)) without the re-
maining terms on the right-hand side of Eq. (3). In Eq. (3), R̂ is the unit
bond-length vector, μ is the reduced atomic mass, and the summation
over i and j is the contribution of the cluster of nearest atoms. The
atomic vibration is calculated based on a quantum statistical procedure
with an approximate quasi-harmonic vibration, in which the Hamilto-
nian of the system is written as a harmonic term with respect to the
equilibrium at a given temperature plus an anharmonic perturbation:

= + = + + = +H P
μ

U χ H U a δU y H P
μ

k y
2

( ) ( ) ( ),
2

1
2

,E E E eff
2

0 0
2

2

(4)

with = −y x a, =a T x( ) , and =y 0, where a is the net thermal
expansion and y is the deviation from the equilibrium value of x at
absolute temperature T . The potential interaction between each pair of
atoms in the single bond can be expressed by the anharmonic Morse
potential for cubic crystals. Expanding to fourth order, we have
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where D is the dissociation energy by = −U r D( )0 and α describes the
width of the potential. For orderly doped crystals, we assign the host
atom the indicator 1 and the substitute atom the indicator 2. Then we
have the Morse potential expressed by Eq. (5) for the case of doped
material, namely
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For simplicity, we approximate the parameters of the Morse

potential in Eq. (6) at a certain temperature by the following arithmetic
averages:
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From Eqs. (3) and (6), we obtain the Einstein potential of the ef-
fective interaction as

= + +U x U a k y δU y( ) ( ) 1
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We calculate ˆ ˆ(R .R )01 ij in Eq. (3) for lattice fcc crystals, substitute Eq.
(6) with = +x y a into Eq. (3), and use Eq. (8) to calculate the sums in
the second term of Eq. (3) with the reduced mass μ of the doped metals.
By comparing the results to Eq. (4), we determine the coefficients keff
and k eff3 of the anharmonic effective potential in terms of the para-
meters of the Morse potential, namely
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D α

5 ,
5

4
.eff eff12 12

2
3

12 12
3

(9)

To derive analytical formulas for the cumulants of the fcc crystals,
we use perturbation theory.15 The atomic vibration is quantized as
phonons. Considering the phonon–phonon interactions to account for
anharmonicity effects, we obtain the cumulants up to third order:
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In Eqs. (10)–(12), T is the absolute temperature and kB is the
Boltzmann constant. Equations (10)–(12) describe how the cumulants
depend on the reduced mass μ12 of the doped metals and the absolute
temperature T . If we consider that, at a certain temperature, the re-
duced mass μ12 is proportional to the number of atoms, meaning that
the cumulants depend on the DR of the materials. We express the re-
duced atomic mass being proportional to the number n of atoms of the
Cu and Ag metals as

= − = = −μ n μ n μ n108 44.5 , 63.5 , 108(1 ).12 1 2 (13)

Substituting Eq. (13) into Eqs. (10)–(12), we have the dependence
of the cumulants on the number of atoms n:
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Next, we have that the general volumetric coefficient of thermal
expansion is given by
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where V is the volume corresponding to the change of absolute tem-
perature T under pressure P. From the equation of state of the thermal
system, we have
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where ∂
∂( )V P

V T
is the elastic modulus that determines the change of

volume due to pressure interaction. We ignore links between the atomic
vibrations and assume the Helmholtz free energy to be of the form

= + ∑F U Fq q, and U is the total potential energy and Fq is the free
energy and arises from lattice vibrations with wave vector q. Then the
pressure depends on the volume according to
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When anharmonic effects appear, the lattice system equilibrium at a
new location and volume is expanded, so the important phenomenon
associated with the anharmonic effect is the dependence of the net vi-
bration frequency on volume. This dependence is described by the
second term in Eq. (19).

To simplify, we assume that the volume dependence is the same at
all net vibration frequencies and we consider the expansion in one di-
mension (linear thermal expansion), written in terms of the Grüneisen
factor as
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The factor γG characterizes the anharmonic effect with a net thermal
coefficient:
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Simultaneously, we have − = =a T a T da α rdT( ) ( ) T0 .
From the above expression, we obtain the linear thermal expansion

coefficient:
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Substituting Eq. (14) into Eq. (21) and rearranging, we obtain the
dependence of the linear thermal expansion coefficient on the absolute
temperature T and the DR n of the metals:
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To consider the anharmonic contributions to the mean-square re-
lative displacement (MSRD), we used an argument analogous to the one
[3] for its change due to the temperature increase and obtain
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Here, γG is the Grüneisen parameter, V VΔ / is the relative volume
change due to thermal expansion, and T0 is a very low temperature so
that σ T( )2

0 is a harmonic MSRD.
We calculate the relative thermal volume change V VΔ / using

= +R T R a T( ) ( ) and the Grüneisen parameter in Eq. (20). By sub-
stituting the obtained results into Eq. (23), we derive the anharmonic
factor as
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This factor is proportional to the temperature and inversely pro-
portional to the shell radius, thus reflecting a similar anharmonicity
property obtained in experimental catalysis research [2] if R is con-
sidered as the particle radius. In the present work, we also consider how
the anharmonic factor β depends on the atomic DR by an expression for
the correlated Einstein temperature θE in Eq. (24):
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The anharmonic contribution ΦA to the EXAFS phase at a given
temperature is the difference between the total phase and that of the
harmonic EXAFS. The EXAFS oscillation function Eq. (1) including
anharmonic effects contains the DWF −e w kT( ) that accounts for the ef-
fects of atomic thermal vibrations. Based on the analysis [9] of the
cumulant expansion, we obtain
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On the right-hand side of Eq. (26), the second and fifth terms con-
tribute to the EXAFS amplitude. The only anharmonic contributions to
the phase are the first and fourth terms and those to the MSRD in the
third term. Therefore, from Eq. (26) we obtain the anharmonic con-
tribution to the EXAFS phase as
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In Eq. (27), ΦA depends not only on the absolute temperature T and
the wave number k but also on the DR n of the metals.

3. Discussion and comparison of numerical results

The parameters of the Morse potential D and α for AgeAg, CueCu
crystals have been known [7], from Eq. (7), we calculate the parameters
D12 and α12 as given in Table 1.

Substituting the thermodynamic parameters D12 and α12 from Table I
into Eq. (9) with Boltzmann's constant = × − −k 8.617 10 eVÅB

5 1 and
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Plank's constant = × − eV sℏ 6.5822 10 .16 , we calculate the values of the
coefficients keff and k3eff of the anharmonic effective potential in terms
of the parameters of the Morse potential as given in Table 2.

Substituting the values of the thermodynamic parameters from
Tables 1 and 2 into Eqs. (14)–(20), we obtain expressions for the cu-
mulants σ n( )n( ) , the thermal expansion coefficient α T n( , ), the anhar-
monic factor β T n( , ), and the contribution to the EXAFS phase Φ T n( , )A .
The expressions depend on temperature and the metallic DR. Fig. 1
shows how our first three calculated cumulants depend on DR at a
certain temperature (700 K) for the compound AgeCu. The graphs of
σ T( )(1) , σ T( )(2) , and σ T( )(3) show that for DRs of zero to below 50% and
from over 50%–100%, the cumulant values are proportional to the DR.
However, there are breakpoints in the lines at the 50% point, meaning
that we do not have ordered atoms at this ratio, which agrees with the
findings of another study [4]. Thus in the present study, AgeCu alloys
do not form an ordered phase at a molar composition of 1:1. From the
temperature dependence of our calculated second cumulant or DWF for
AgeCu, the latter became copper (CueCu) at a ratio of 100% and
agrees well with experimental value [7] (point (*) in Fig. 1).

Fig. 2 shows how our calculated thermal expansion coefficient αT n,
of AgeCu depends on temperature and DR. With the absolute tem-
peratureT , our αT n, have the form of the specific heat CV , thus reflecting
the fundamental principle of solid state theory that the thermal ex-
pansion results from anharmonic effects and is proportional to the
specific heat CV [12]. Our calculated values of αT n, approach the con-
stant value αT

0 at high temperatures and vanish exponentially with θ T/E

at low temperatures, which agrees with the findings of other research
[11]. Our calculated thermal expansion coefficient αT n, approaches
being proportional to the DR from zero to below 50% and from over
50%–100%, but again there is a breakpoint at 50%, thereby agreeing
with the evaluation by Kraut and Stern [5]. Fig. 3 shows how our cal-
culated anharmonic contribution to the AgeCu, anharmonic factor
β T n( , ) depends on temperature and DR. According to the graph, the
anharmonic factor is proportional to the temperature and DR. It is
approximately zero at low temperatures, thus reflecting an anharmo-
nicity property that agrees well with those obtained previously [8].
Fig. 4 shows how our calculated anharmonic contribution to the EXAFS
phase Φ T n( , )A of AgeCu depends on temperature and DR for the first
shell for single scattering. These contributions are especially large at
high temperature and high DR and have breakpoints in the range of
50–70%. This result agrees with previous evaluation [5]. The anhar-
monic contribution Φ T n( , )A to the EXAFS phase at a given temperature
is the difference between the total phase and that of the harmonic
EXAFS.

4. Conclusion

In this work, a new analytical theory for calculating and evaluating

the thermodynamic properties of AgeCu fcc crystals has been devel-
oped based on quantum statistical theory with the effective anharmonic
Einstein potential. The expressions for the thermodynamic parameters,

Table 1
Parameter values of Morse potential for Ag, Cu, and AgeCu crystals.

Crystal D (eV)12 −α (Å )12
1

AgeAg 0.3323 1.3690
CueCu 0.3429 1.3588
AgeCu 0.3376 1.3638

Table 2
Anharmonic effective parameter values.

Crystal −k (eVA )eff 2 −k (eVA )eff3 3

AgeAg 3.1139 1.0657
CueCu 3.1655 1.0753
AgeCu 3.1397 1.0705

Fig. 1. Dependence of cumulants on doping ratio (DR).

Fig. 2. Dependence of thermal expansion coefficient on temperature and DR.

Fig. 3. Dependence of anharmonic factor on temperature and DR.
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the effective force constant, the correlated Einstein frequency and
temperature, the cumulants expanded up to third order, the thermal
expansion coefficient, and the anharmonic factor in the anharmonic
EXAFS spectra of AgeCu crystals agree with all the standard properties

of these quantities. The expressions used for calculations for the orderly
doped fcc crystals have similar forms to those for pure crystals. The
graphs in Figs. 1–4 show dependence of thermodynamic parameters on
temperature and DR of the fcc crystals, they reflect the properties of
anharmonicity in EXAFS and agree well with those obtained in previous
studies. The reasonable agreements between our calculated results with
experimental and the other study for AgeCu indicate the efficiency of
the present method in calculating and analyzing the thermodynamic
properties of doped crystals based on ACEM in EXAFS theory.
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