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Abstract. The pressure effects on thermo-mechanical properties of B2-type FeAl compound have been
investigated based on the moment method in statistical mechanics. We derive analytical expressions of
equation-of-state, isothermal bulk modulus and specific heats at constant volume and constant pressure of
B2-type iron aluminide intermetallic compound. Numerical calculations for lattice parameter, isothermal
bulk modulus, Young’s modulus, shear modulus and specific heat at constant pressure of B2-type Fe-40 at.%
Al have been performed up to pressure of 10 GPa. Our research shows that the elastic moduli are linear
proportional to pressure and the specific heat at constant pressure diminishes strongly at temperature
below 300 K. The present statistical moment method results are compared with available experimental
data as well as ab initio calculations when possible to verify the developed theory. This research proposes
the potential of the moment method in the investigation of thermo-mechanical properties of materials
under pressure.

1 Introduction

The iron aluminide (FeAl) intermetallic binary com-
pounds have attracted a lot of attention of researchers
because these compounds exhibit many desired physi-
cal properties such as high melting temperature, high-
temperature oxidation, relatively high strength, stiffness,
and good corrosion resistance behavior at high tempera-
tures [1,2]. These properties of iron aluminide compounds
make them become potential candidates for industrial
applications, especially at high temperature conditions,
such as protective coating for materials, gas turbines
and/or automobile engine components, substitution of fer-
ritic stainless steels at high temperatures. Besides many
interesting properties, the FeAl intermetallic systems show
several structural phases at various temperatures and
compositions in which B2-type and DO3-type structures
remain stable over a wide range of aluminum contents [3].
While the B2-FeAl intermetallic compound, having the
CsCl structure exists in aluminum composition range
35–50 at.%, the ordered DO3 cubic structure is stable

a e-mail: tranthiha@tdtu.edu.vn

in the interval of 23–36 at.% Al. The DO3 phase will
transform towards the crystalline B2 phase when the Al
composition increases to attain the FeAl stoichiometry.

Previously many investigations for FeAl systems have
been performed to deeply understand phase stabilities [4],
thermodynamic properties [5], formation energies [6],
vacancy effects [7] and phonon spectra [8,9]. Numerous
efforts have been devoted with a focus on the mechan-
ical properties of B2-type FeAl intermetallic with an
aim to increase strength and corrosion resistance. For
example, when considering the impact of quenched-in
thermal vacancies on mechanical properties of B2-FeAl,
Zamanzade et al. showed that bi-vacancies increase the
hardness values of alloy much more significantly in com-
parison to the mono-vacancies [7]. Although extensive
experimental and theoretical studies of Fe-Al system
have been done, the investigation of thermodynamic and
mechanical properties of B2-type FeAl intermetallic alloy
under pressure is still very limited. To our best knowledge,
most of previous works just considered thermo-mechanical
properties of B2-FeAl alloy at ambient pressure, no mea-
surements and calculations have ever been implemented
for pressure-dependent elastic moduli and specific heats of
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B2-type FeAl compound. As far as we known, compression
plays a significant effect on the structural and thermo-
mechanical properties of material due to the limitation of
atomic vibrations. These physical properties can be mod-
ified by turning the environmental pressure which may
have a potential in engineering applications. Therefore, it
is important to determine thermo-mechanical properties
of B2-type FeAl intermetallic alloy at high pressure.

In present work, with the aim of contributing to the
knowledge about thermo-mechanical properties of the
B2-type FeAl intermetallic under pressure, we apply the
statistical moment method (SMM) in quantum statisti-
cal mechanics [10–12] for B2-type Fe-40 at.% Al alloy to
investigate the pressure effects on its lattice parameter,
elastic moduli (bulk modulus, Young’s modulus and shear
modulus), and specific heats at constant volume and pres-
sure. Numerical calculations are performed up to pressure
of 10 GPa and compared with those of available data to
verify theory.

This paper is organized as follows, in Section 2,
we present principle of calculations to study thermo-
mechanical properties of intermetallic B2-type FeAl alloy
which will be solved numerically. In Section 3, we discuss
numerical results in detail followed by Section 4 in which
we make the conclusions of the paper.

2 Principle of calculations

2.1 Statistical moment method

In the first part of this section, we present the SMM
approach for intermetallic alloys. Let us consider the B2-
type iron aluminide system with N atoms in which N1

and N2 are, respectively, the number of Fe and Al atoms.
Then concentrations of Fe and Al atoms are CFe = N1/N
and CAl = N2/N . Using the Boltzmann relation, the
Helmholtz free energy of the FeAl system ψ can be writ-
ten by taking into account the configuration entropy of
the system Sc as [13]

ψ = CFeψ
Fe + CAlψ

Al − TSc. (1)

In this above equation, ψFe and ψAl are, correspond-
ingly, the Helmholtz free energies of Fe and Al particles

which have been given in term of SMM parameters (see
Appendix A) as [11]

See equations (2) and (3) above,

here UFe
0 and UAl

0 denote the sum of effective pair interac-
tion energies of Fe and Al ions; harmonic parameters kFe

and kAl, anharmonic expansion coefficients γFe1 , γFe2 , γAl
1 ,

and γAl
2 are defined as follows [10–12]

See equation (4) next page,

with α 6= β = x, y or z, eq indicates the thermal averag-
ing over the equilibrium ensemble, ϕ(r) is the function of
interaction potential between atoms, θ = kBT (kB is the
Boltzmann constant), and ψFe

0 and ψAl
0 are, respectively,

the harmonicity contributions to the free energies ψFe and
ψAl which have the forms as [11,12]
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xAl =
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, XAl = xAl coth (xAl). (6)

The Helmholtz free energy ψ is going to be used to
calculate various thermo-mechanical quantities (such as
the equation-of-state, elastic moduli and specific heats at
constant volume and pressure which are closely related
to the anharmonicity of thermal lattice vibrations) of B2-
FeAl intermetallic compound.

2.2 The SMM equation-of-state

According to thermodynamic considerations, the pressure
P can be calculated through the free energy ψ of the
crystal as

P = −
(
∂ψ

∂V

)
= − r1

3V

(
∂ψ

∂r

)
. (7)
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By substituting the Helmholtz free energy ψ from equa-
tion (1) into equation (7), we derive the SMM equation-of-
state (EOS) describing the pressure versus volume relation
of the system as follows
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where v is the atomic volume v = V/N . The solution of
the SMM EOS (8) gives us the value of nearest-neighbor
distance (NND) r1(P, T ) between two intermediate atoms
at pressure P and temperature T . And the lattice param-
eter ah(P, T ) of BCC or CsCl structure is calculated as

ah(P, T ) = 2/
√

3r1(P, T ).

2.3 The isothermal bulk modulus

Let us now consider the isothermal bulk modulus of the
solid B2 phase of FeAl. According to the definition of the
isothermal bulk modulus KT , it is given in terms of the
volume V and pressure P as [14]

KT = −V0
(
∂P

∂V

)
T

= V0

(
∂2ψ

∂V 2

)
T

, (9)

where V0 is the crystal volume at zero pressure.
Substituting equation (1) into equation (9), we derive

the final expression of isothermal bulk modulus KT of
B2-type FeAl alloy as the following

KT = CFeK
Fe
T + CAlK

Al
T , (10)

where the partial bulk moduli components KFe
T and KAl

T
are given by
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here αFe
T and αAl

T are the partial linear thermal expan-
sion coefficients; yFe0 and yAl

0 are, respectively, the atomic
displacements of Fe and Al atoms from the equilibrium
positions in the B2-FeAl system [10–12].

2.4 Specific heats at constant volume and constant
pressure

The Gibbs-Helmholtz relation gives us the energy E of
FeAl system as

E = ψ − θ
(
∂ψ

∂θ

)
= CFeE

Fe + CAlE
Al, (13)

where energies EFe and EAl have the forms as [11–13]
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The specific heats at constant volume CV and constant
pressure CP are then derived, respectively, as follows [15]

CV =
∂E

∂T
= CFeC

Fe
V + CAlC

Al
V , (17)

and

CP = CV + 9TV KTα
2
T , (18)

where αT = CFeα
Fe
T + CAlα

Al
T is the thermal expansion

coefficient of the FeAl system; and the partial specific
heats CFe

V and CAl
V , respectively, are

See equations (19) and (20) next page.

2.5 Interatomic potential

In this paper, the thermo-mechanical properties of B2-
type FeAl compound under pressure are numerically cal-
culated by using the interatomic potential derived from ab
initio electronic structure calculations within the Möbius
lattice inversion scheme [16–20]. Based on the Möbius
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inversion in the number theory, Chen et al. proposed the
lattice inversion method to obtain interatomic pair poten-
tials from the cohesive energy curves. In this approach,
the cohesive energy per atom of a crystal Ec(r) can be
expressed in terms of the sum of the interatomic potentials
ϕ(r) as [21,22]

Ec(r) =
1

2

∑
i 6=j

ϕ(rij) =
1

2

∞∑
k=1

zkϕ(ν(k)r1), (21)

where r1 is the atomic nearest neighbor distance, ν(k) =
νk denotes the ratio of the kth neighbor distance (rk) to
the first-neighbor distance r1 (then νkr1 = rk), and zk
is the coordination number of kth neighbor atoms which
denotes the number of atoms in kth coordination sphere.
With BCC or CsCl-structure, we have ν1 = 1 and z1 = 8,
ν2 =

√
4/3 and z2 = 6, ν3 =

√
8/3 and z3 = 12, ν4 =√

11/3 and z4 = 24, ν5 = 2 and z5 = 24, etc.
The pair interatomic potential ϕ(r) is given with an

inverse operation as

ϕ(r) = 2

∞∑
k=1

I(k)Ec

(
ν(k)r1

)
, (22)

where I(n) denotes the Möbius inversion function depend-
ing on structure type.

For numerically, the pair potential ϕ (r) between two
intermediate atoms is assumed to be the universal
binding-energy relation potential derived from the ab
initio tight-binding linear muffin-tin orbital method as [23]

ϕαβ(r) = −pαβ0
[
1+qαβ0 (r−r0)

]
exp{−qαβ0 (r−r0)}, (23)

where superscripts α and β indicate the α and β atoms

in the binary FeAl alloy, respectively; pαβ0 , qαβ0 , and r0
are potential parameters fitted within the Möbius lattice
inversion scheme.

3 Numerical calculations and discussion

The above analytical formulae allow us to investigate the
thermo-mechanical properties of the B2-type FeAl sys-
tem under pressure. In this section, thermo-mechanical

Table 1. The fitted parameters of universal binding-
energy relation potential expressed for B2-type FeAl [22].

α− β r0 (Å) pαβ0 (eV) qαβ0 (Å−1)

Fe–Fe 2.803 0.482 2.020
Al–Al 3.252 0.343 1.162
Fe–Al 2.880 0.379 1.896

quantities including the lattice constant, elastic moduli
(isothermal bulk modulus, Young’s modulus and shear
modulus) and specific heats of B2-type FeAl alloy are cal-
culated self-consistently with the lattice spacing of the
given system. Numerical calculations have been performed
for B2-type FeAl with 40 at.% Al. The universal binding-
energy relation potential parameters of B2-FeAl are given
in Table 1 [22]. And the coordination sphere method is
applied to calculate the interaction energies UFe

0 and UAl
0 .

Firstly, we consider the lattice parameter of B2-FeAl
alloy. At ambient pressure, the lattice parameter cal-
culated by SMM is 2.8821 Å. This result is consistent
with experiment (2.908 Å) [24] and other calculations
[21,25–27]. The difference between present theory and pre-
vious works is about 1%. When considering the effects of
pressure, by solving SMM EOS (8), we derive the lattice
parameter of B2-FeAl alloy up to 10 GPa. Here it is worth
mentioning that, in this work, we assume the binary alloy
B2-type FeAl remains its CsCl structure up to pressure
of 10 GPa. The pressure-dependent lattice parameters
calculated in SMM scheme up to 10 GPa at various tem-
peratures are shown in Figure 1. As it can be seen from
Figure 1, the lattice parameter is a decreasing function
of the pressure and it increases slightly with temperature.
These effects can be explained by the reduction of atomic
vibrations when pressure increases, and the increasing of
atomic fluctuations (or anharmonicity contributions) at
high temperature. When pressure increases from ambient
conditions to 10 GPa, the lattice parameter is reduced
about 4.2% and the slopes of these curves (in Fig. 1) are
about |dah/dP | ' 0.012− 0.016 Å/GPa. Meanwhile when
temperature increases from 100 K to 900 K, the lattice
parameter expands approximately 0.5%.

With the aid of the Helmholtz free energy ψ, using
equations (1), (2) and (3) we could determine the
isothermal bulk modulus KT of B2-type FeAl alloy. At
room temperature and ambient pressure conditions, while

https://epjb.epj.org/


Eur. Phys. J. B (2020) 93: 11 Page 5 of 8

Table 2. The lattice constant ah, isothermal bulk modulus KT , Young’s modulus EY , shear modulus G and specific
heats CV and CP at room temperature and at ambient pressure.

ah (Å) KT (GPa) EY (GPa) G (GPa) CP (J/mol.K)

Present study 2.8821 166.84 167.17 62.71 24.37
Experiments 2.908a 152.0b – – 24.62g

Calculations 2.893b 148.2b 148.9b 55.9b –
2.919c 172.0f – – –
2.873d 174.8d – – –
2.880e 177.0e – – –

aXRD measurements [24]; bEmbedded-atom method [21]; cModified embedded-
atom method [25]; Ab initio calculations: dReference [26]; eReference [27];
fReference [28]; gDSC measurement [29].

Fig. 1. Pressure-dependent lattice parameter of B2-type FeAl.

many previous theoretical determinations (172.0 GPa [28],
174.8 GPa [26] and 177.0 GPa [27]) significantly overes-
timate the experimental bulk modulus of B2-type FeAl,
the SMM calculations give the value KT (300 K, 0 GPa) =
166.84 GPa which reasonably agrees with the experimen-
tal X-ray diffraction measurement [21]. The isothermal
bulk moduli KT at various temperatures (T = 0 K, 300 K,
500 K, 700 K and 900 K) as functions of pressure are
presented in Figure 2. From this figure, we can conclude
that, at each given temperature the isothermal bulk mod-
ulus KT increases forcibly with the increasing of pressure.
The variation of KT with pressure can be described by
a linear function. The slopes of KT lines (in Fig. 2)
are about dKT /dP ' 14.7−15.2. When the temperature
increases, the value of KT reduces gradually. This behav-
ior of isothermal bulk modulus is because of the vigorous
thermal fluctuations of particles at high temperatures.

Additionally, if we know the Poisson’s ratio ν of mate-
rial, we would obtain the Young’s modulus EY and
shear modulus G, correspondingly, from the following
relations [30]

EY ≈ 3 (1− 2ν)KT , (24)

Fig. 2. Pressure dependence of the isothermal bulk modu-
lus KT at various temperatures calculated within the SMM
scheme.

and

G =
EY

2(1 + ν)
. (25)

Values of isothermal bulk modulus KT , Young’s mod-
ulus EY and shear modulus G at room temperature and
zero pressure are listed in Table 2. From this table we can
see that the prediction of Young’s modulus EY and shear
modulus G of B2-type FeAl alloy has been insufficient and
in disagreement between two different theoretical meth-
ods. Additional theoretical as well as experimental efforts
are needed to verify these evaluations. In Figure 3, we
show the pressure dependence of Young’s modulus EY and
shear modulus G at different temperatures T = 100 K,
500 K and 900 K. Here it should be noted that, the
Poisson’s ratio of B2-type FeAl alloy has been assumed
to remain constant and follow the Vegard’s law as ν =
CFeνFe +CAlνAl, where experimental Poisson’s ratio of Fe
and Al metals are νFe = 0.29 and νAl = 0.35, respectively.
As we can see, the Young’s and shear moduli are linearly
proportional to pressure with slopes dEY /dP ' 14.7−15.3
and dG/dP ' 5.5−5.7, respectively.

https://epjb.epj.org/
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Fig. 3. Pressure dependence of the Young’s modulus EY and
shear modulus G at various temperatures calculated within the
SMM scheme.

There are several approaches to estimate heat capacities
of alloys and one of them is the well-known Neumann-
Kopp approach [31]. This approach assumes a simple
relation for estimation of the heat capacity of alloy by
summing the heat capacities of the constituent elements.
While this technique surprisingly predicts well the value
of heat capacity of alloy at room temperature, it works
poorly at abnormal conditions, especially at high tem-
peratures and high pressure. The intimate reason of this
effect could be caused from particular anharmonic contri-
butions of different constituents at high temperature and
pressure. In this work, the specific heat at constant pres-
sure CP of intermetallic FeAl alloy is determined based
on the SMM approach. At ambient conditions, SMM cal-
culations give the result CP = 24.37 J/mol.K that is in
very good agreement with recent experimental DSC mea-
surements (24.62 J/mol.K) [29]. In Figure 4, we present
the specific heats CP of B2-type FeAl at various tem-
peratures (T = 0 K, 300 K, 500 K, 700 K and 900 K)
as functions of pressure. From this figure we can see
that, at constant pressure and low temperature, especially
below 300 K, the specific heat CP increases energetically.
When temperature increases from 300 K to 900 K, the CP
enhances progressively. Regarding to the pressure effects
on the specific heat CP , it diminishes slowly gradually
as the compression increases. In particularly, the specific
heat CP alters strongly on pressure at low temperature.
For example, the slope of the specific heat |dCP /dP | at
100 K and 900 K are, respectively, 0.25 J/mol.K.GPa and
0.12 J/mol.K.GPa.

Before making the conclusion of this research, it should
be noted that, to the best of our knowledge there are
seemly no calculations or measurements which have been
performed to investigate the pressure effects on ther-
modynamic and mechanical properties of B2-type FeAl
alloy. Then the comparison between our SMM calculations
and other results has been ignored. Notwithstanding, this
work gives us the prediction of pressure-dependent lattice

Fig. 4. Pressure dependence of the specific heat CP at room
temperatures calculated within the SMM scheme.

parameter, elastic moduli and specific heats. On the oppo-
site side, the current SMM approach has a limitation due
to the derivation from a model potential. Numerical calcu-
lations of thermo-mechanical properties might be affected
by the choosen force potential. Then the data derived from
this research can be seen as useful references for future
work. We hope that the aforementioned theoretical find-
ings of these thermo-mechanical quantities will be verified
experimentally in near future.

4 Conclusions

In this work, the pressure-dependent thermo-mechanical
quantities of B2-type FeAl alloy have been investigated
by using the statistical moment method in quantum sta-
tistical mechanics. Our development in this paper is the
derivation of the Helmholtz free energy, SMM equation-
of-state and solving this SMM EOS to get the pressure
dependence of the lattice bond length. Furthermore, using
the derived Helmholtz free energy, we establish the ana-
lytical expressions of bulk modulus and specific heats at
constant volume and pressure of intermetallic B2-FeAl
alloy. Numerical calculations have been performed for Fe-
40 at.%Al with CsCl structure up to pressure of 10 GPa.
Our research shows that the elastic moduli are linear
proportional to pressure and the specific heat at con-
stant pressure diminishes strongly at temperature below
300 K. The good and reasonable agreement between our
calculated results with experimental measurements and
with those of the other theoretical calculations denotes
the efficiency of SMM in the investigation of the pres-
sure effects on thermodynamic and mechanical quantities
of materials. The advantage of this approach compar-
ing to other theoretical methods is that it has taken
into account the higher-order anharmonic terms in the
atomic displacements and the quantum-mechanical zero-
point vibrations. This method has itself included the
anharmonicity contributions due to atomic fluctuations at

https://epjb.epj.org/
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a wide pressure and temperature ranges. Therefore, it has
a great potential to be developed to study the temperature
and pressure effects on thermo-mechanical properties of
other intermetallic alloys with various structural phases.
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Appendix A: Helmholtz free energy in SMM
formalism

Considering a system with Hamiltonian as

Ĥ = Ĥ0 − αV̂ , (A.1)

where Ĥ0 is the lattice Hamiltonian in the harmonic
approximation and the second term is due to the anhar-
monicity of thermal lattice vibrations. As reported by
Tang and Hung [10], the Helmholtz free energy of this
system at temperature T is given by

ψ = ψ0 −
∫ α

0

〈V̂ 〉αdα , (A.2)

where ψ0 is free energy of the system corresponding to the

Hamiltonian Ĥ0, and 〈V̂ 〉α = −∂ψ/∂α.

If Hamiltonian Ĥ of the system has a complex form, we
should divide it into simpler parts as

Ĥ = Ĥ0 −
∑
i

αiV̂i. (A.3)

With the same procedure, we should firstly find the free
energy ψ1 of the system corresponding to the Hamiltonian

Ĥ1 = Ĥ0−α1V̂1. Afterwards we find the free energy ψ2 of

the system corresponding to Ĥ2 = Ĥ1 − α2V̂2, and so on.
In this way we can derive the free energy ψ of the system

with Hamiltonian Ĥ.
Assuming the potential energy of the system composed

of N atoms can be written as

U =
N

2

∑
i

ϕi0 (|ri + ui|) (A.4)

where ri is the equilibrium position of the ith atom, ui is
its displacement, and ϕi0 is the effective interaction energy
between zeroth and ith atoms. By expanding the poten-
tial energy ϕi0 (|ri + ui|) up to the fourth-order terms of

atomic displacements, we derive

U =
∑
i

{
ϕi0(|ri|) +

1

2

∑
α,β

(
∂2ϕi0

∂uiα∂uiβ

)
eq

uiαuiβ

+
1

6

∑
α,β,γ

(
∂3ϕi0

∂uiα∂uiβ∂uiγ

)
eq

uiαuiβuiγ

+
1

24

∑
i,α,γ,η

(
∂4ϕi0

∂uiα∂uiβ∂uiγ∂uiη

)
eq

uiαuiβuiγuiη + ...

}
.

(A.5)

Using equation (A.5), the thermal average of poten-
tial energy of the system is given in terms of the power
moment 〈un〉, harmonic parameter k, anharmonic coeffi-
cients γ1 and γ2 as [11]

〈U〉 = U0 + 3N

[
k

2
〈u2〉+ γ1〈u4〉+ γ2〈u2〉2 + ...

]
, (A.6)

where

k =
1

2

∑
i

(
∂2ϕi0
∂u2iα

)
eq

(A.7)

γ1 =
1

24

∑
i

(
∂4ϕi0
∂u4iα

)
eq

, γ2 =
6

24

∑
i

(
∂4ϕi0

∂u2iα∂u
2
iβ

)
eq

,

(A.8)
with α 6= β = x, y or z, eq indicates the thermal averag-
ing over the equilibrium ensemble and U0 =

∑
i ϕi0 (ri)

denotes the total pair interaction energy ϕ (r0i) on the
0th atom.

In order to derive the expression of the Helmholtz free
energy, we need to evaluate analytically the following
integrals

I1 =

∫ γ1

0

〈u4i 〉dγ1, I2 =

∫ γ2

0

〈u2i 〉2γ1=0dγ2. (A.9)

Then the final Helmholtz free energy of the system with
N atoms is given by [11]

ψ = U0 + 3Nθ
[
x+ ln

(
1− e−2x

)]
+

3Nθ2

k2

{[
γ2X

2 − 2γ1
3

(
1 +

X

2

)]
+

2θ

k2

[
4

3
γ22X − 2

(
γ21 + 2γ1γ2

)
(1 +X)

](
1 +

X

2

)}
,

(A.10)

where x = ~ω/2θ, X = x cothx, θ = kBT (kB is the

Boltzmann constant), and ω =
√
k/m.
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