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Abstract
Based on the Debye - Waller factor in extended x-ray absorption fine structure spectra, the
correlated displacement function, mean square displacement (MSD) and mean square relative
displacement (MSRD) were determined. Analytical expressions of MSD and MSRD were
considered using Debye models. Challenging problems due to many-particles effects were
replaced by a calculation based on the anharmonic effective potential, including the interaction
of absorbing and scattering atoms with their nearest neighbours atoms. The difference between
MSRD and MRD was analyzed. The methods were applied to face-centred-cubic crystals and
their alloys, and have discovered irregularities in the structure of CuAg (at a 50:50 rate) alloy at
low temperatures. Numerical results for copper (Cu) crystal and copper–silver alloys (CuAgX
(X=72; 50)) agreed with experimental values and calculations conducted in other studies.

Keywords: Debye–Waller factor, anharmonic effective potential, CuAgX (X = 72; 50),
anharmonic correlation, displacement correlation function

(Some figures may appear in colour only in the online journal)

1. Introduction

The thermal oscillations in Extended x-ray Absorption Fine
Structure (EXAFS) that give rise to Debye–Waller factors
(DWF) e-W(T) have been considered in previous studies [1, 2],
and it has been found that the DWF is related to the damping
of the EXAFS amplitude as the temperature increases. Based
on the expansion of the cumulants due to thermal vibrations
of atoms, the W(T) is reduced in an exponential function to

s»W T 2k T ,2 2( ) ( ) where σ2(T) is the Mean Square Relative
Displacement (MSRD) of the bond between absorbing and
backscattering atoms [3]. Similarly, during the diffraction of
neutrons or x-ray absorption, the DWF has the form

=W T 1 2 k u T .2 2( ) ( ) ( )/ However, the DWF in EXAFS spec-
tra refers to correlated averages over the relative displacement
of σ2(T) for a pair of absorber and backscatter atoms. In
contrast, neutron diffraction u2(T) refers to the Mean Square
Displacement (MSD) of a given atom. The functions σ2(T)
and u2(T) are closely related to one another, and from them,
the Displacement-Displacement Correlation Function

(DDCF) CR(T) can be deduced to describe the correlation
effects in the vibration of atoms. The DWF has an essential
role in the determination of crystal structures as well as
thermal quantities in the EXAFS spectra. Many efforts have
been made to derive the procedures for the calculation and
analysis of σ2(T) [1, 2, 4, 3] and u2(T) [5, 6]. However,
correlation effects for intermetallic alloys have not mentioned
by many studies.

The purpose of this work is to study the correlation
effects in atomic vibrations of cubic crystals in XAFS, i.e., to
develop a new procedure for calculation of the CR(T) for
atomic vibration in the cubic crystals (fcc) and their alloys in
XAFS. Expression for the MSD u2(T) has been derived.
Using it and the MSRD σ2(T) we derive CR(T). The effective
interaction potential of the system has been considered by
taking into account the influences of the nearest atomic
neighbors based on the anharmonic correlated Debye model.
This potential contains the Morse potential characterizing the
interaction of each pair of atoms. The difference between the
σ2(T) obtained from the ACDM and u2(T) from the ADM
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was analyzed. The numerical results for application to copper
(Cu) crystal and CuAgX (X=72; 50) alloys. The expression
CuAgX (X=72) refers to an alloy with 72% Cu and 28% Ag
ratio, and CuAgX (X=50) refers to an alloy with Cu:Ag in a
50:50 ratio. These materials have studied by authors in some
works [7, 8], and have discovered irregularities in the struc-
ture of CuAg (at 50:50 rate) alloy at low temperatures,
accordingly, Cu-Ag alloys do not form an ordered phase at a
molar composition of 1:1. The results obtained by the present
theory have been compared and agree well with experimental
values [9–119-11] and other studies [12, 8, 6].

2. Formalism

In the EXAFS theory, the quantity σ2(T) is defined while
taking the exponential averages exp 2ik.rj( ) in the form [2]

á ñ  á D ñ = - áD ñexp 2ik.r exp 2ik exp 2k . 1j j
2

j
2( ) ( ) ( ) ( )

The factor of expression (1) determines the damping coeffi-
cient due to thermal vibrations in the EXAFS spectra. It is
also known as the Debye–Waller factor or the MSRD. In

expression (1), D = -R u u. ,j j
0

j 0
ˆ ( ) where R j

0ˆ is a unit vector
for atom j at equilibrium, uj is a displacement vector of atom
j, and u0 is the displacement vector of the absorbing atom
located at the coordinate origin. For the harmonic approx-
imation oscillation,

s = áD ñ. 2j
2

j
2 ( )

Substitute D = -R u u.j j
0

j 0
ˆ ( ) into expression (2), MSRD

σ2(T) have the form:

s =á - ñ = á ñ

+ á ñ - á ñ

R u u u R

u R u R R

T . .

. 2 . u . . 3

j
2

j j 0
2

j j
2

0 j
2

0 j j j

( ) [ ˆ ( )] ( ˆ )

( ˆ ) ( ˆ )( ˆ ) ( )

With =u u ,0 j we have the mean square displacement (MSD):

= á ñ = á ñR Ru T u . u . , 4j
2

0 j
2

j j
2( ) ( ˆ ) ( ˆ ) ( )

and the correlated function DDCF:

= á ñR RC T 2 u . u . . 5R 0 j i j( ) ( ˆ )( ˆ ) ( )

From expressions (3), (4), (5), the relation expression can be
deduced:

s = -T 2u T C T . 6j
2

j
2

R( ) ( ) ( ) ( )

To consider anharmonic contributions to the MSRD s Tj
2 ( )

due to temperature, hence the temperature dependence for the
correlation function DDCF CR(T) and MSD u2(T), we used
an argument for its change due to the temperature increase
and obtain σ2(T)−σ2(T0)=(1+β(T))[σ2H − σ2(T0)], with
β=2γGΔV/V; γG is Gruneisen parameter, and ΔV/V is the
relative volume change due to thermal expansion, T0 is a very
low temperature so that σ2(T0) is harmonic MSRD. Devel-
oping further, we obtain the total MSRD
σ2(T)=σ2H(T)+β(T)[ σ2H−σ2(T0)] (

*). It is clear that the
MSRD approaches the very small value of zero-point
contribution σ20 when the temperature approaches zero, i.e.,

σ2(T0) → σ20 for T0→0. Hence, it can be seen in expression
(*) that the total MSRD σ2(T) at a given temperature T con-
sists of the harmonic contribution σ2H(T) and the anharmonic
one σ2A(T), σ

2(T)=σ2H(T)+σ2A(T); and σ2A(T)=β(T)[ σ2H -
σ20].

For harmonic approximation, at low temperatures, s Tj
2 ( )

is isotropic and shows Gaussian symmetry. When the temp-
erature rises to a certain critical value, the interaction between
atoms will be asymmetric, anharmonic effects will appear,
and the phonon interaction must be taken into account. To
determine thermodynamic parameters with an anharmonic
effect, we need to determine the effective elastic force con-
stants (force constants) of atomic pairs in a cluster. The
determination of force constants is based on the effective
anharmonic potential as a function along the direction of the
displacement x. According to ACDM, the anharmonic
potential has the following form [3, 13]:

» +V x
1

2
k x k x , 7eff

A
eff
A 2

3eff
A 3( ) ( )

and in the ADM, the anharmonic potential has the form [14]

» +V x
1

2
k x k x . 8eff

D
eff
D 2

3eff
D 3( ) ( )

Here, keff
A and keff

D are effective elastic force constants, k3eff
A

and k3eff
D are cubic parameters that cause asymmetry of the

interaction potential due to anharmonicity, x is the lattice
thermal expansion. The difference between the V xeff

A ( ) and
V xeff

D ( ) potentials is due to the difference between force
constants keff

A and keff
D and the difference between cubic

parameters k3eff
A and k .3eff

D

The values of the force constant keff
A and the cubic

parameter k3eff
A can be obtained when V xeff

A ( ) is determined.
The mass of the absorbing atom is called M1, and the scat-
tering atomic mass is M2. For the calculation, we assume that
the atomic mass is concentrated in the centre of the pair of
absorbing and scattering atoms. The potential V xeff

A ( ) will take
the form

å m
= +

¹

R RV x V x V
M

x . , 9eff
A

j i i
12 ij

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ˆ ˆ ( )

where V(x) represents an interaction potential between
absorber and backscatter atoms, the sum of i over absorber
(i=1) and backscatter (i=2) atoms and the sum of j over
their nearest neighbours describe the lattice contributions to
pair interactions and depend on the crystal structure type. R̂ is
the unit vector and m = +M M M M1 2 1 2( )/ is the reduced
mass. For simplicity, we assume M1=M2=M and μ=M/
2. For fcc crystals, we have

= + - + - +V x V x 2V
x

2
8V

x

4
8V

x

4
. 10eff

A ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( )

Similarly, the values of keff
D and k3eff

D in the ADM can be
obtained by determining the V xeff

D ( ) potential with an
expression of the single-particle effective potential, and when
only the influence of N neighbour atoms is taken into account,

2

Phys. Scr. 95 (2020) 105708 B D Nguyen



the V xeff
D ( ) potential can be written as

å=
=

R RV x V x . , 11
0

eff
D

j 1

N

j( ) ( ˆ ˆ ) ( )

where R0ˆ has been defined above, and Rj
ˆ is the unit vector of

the jth atom from the equilibrium position. For single-atom
fcc crystals,

= + - + + -V x V x V x 4V
x

2
4V

x

2
. 12eff

D ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

The use of the effective harmonic potentials given in the
above equations converts the complex three-dimensional
problem for multi-particle effects into a simpler one-dimen-
sional problem.

The Morse potential is expanded to the third-order
around its minimum point:

a a= - » - + - +a a- -V x D e 2e D 1 x x ... ,
13

2 x x 2 2 3 3( ) ( ) ( )
( )

where α describes the width of the potential, and D is the
dissociation energy. For two-component intermetallic alloys
AB, if atom A is represented by index 1 and atom B (blended)
is represented by indication 2, then the width of potential will
be α12 and the dissociation energy is D12. Values of α12 and
D12 are calculated as a percentage of alloy doping [8]. In
equation (13), the other parameters have been defined as
y=x−a, x=r−r0, a=〈r − f0〉, where, r is the distance
between two atoms at temperature T, and r0 is its value at the
equilibrium position. The atomic vibration is quantized as
phonon, that is why we express y in the term of annihilation
and creation operators, â and â+, i.e., y=a0=(â+â+);
a0
2=ωD

0 /2keff, and use the harmonic oscillator state |n>as
the eigenstate with the eigenvalue En=n ω2

D, ignoring the
zero-point energy for convenience. Using the quantum sta-
tistical method, where we have used the statistical density
matrix Z and the unperturbed canonical partition function ρ0,
Z=Tr ρ0, we determined the MSRD, MSD function.

According to the anharmonic correlated Debye model,
we have

a a= = -k 5D , k
3

4
D , 14eff

A
12 12

2
3eff
A

12 12
3 ( )

and the anharmonic Debye model is

a a= = -k 8D , k D . 15eff
D

12 12
2

3eff
D

12 12
3 ( )

The considered quantities in the current theory are derived in
expressions (4)–(6) based on the dualism of an elementary
particle, i.e., its corpuscular and wave properties. Next, we
describe the system in the Debye model involving all different
frequencies up to the Debye frequency, each of which cor-
responds to a wave with a frequency ω(q) and wave number q
that vary in the first Brillouin zone. Based on ACDM, σ2(T)
has the form

òs
p

w=
+
-

p
T

c

2 k
q

1 z q

1 z q
dq, 162

eff
A 0

c

A
A

A
( ) ( ) ( )

( )
( )

/

w

b

= =

=

b wz q e , q 2
2k

M
sin

qc

2
,

1

k T
.

17

A
q

A
eff
A

B

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

( )

( ( ))

If we substitute keff
A from equation (4) into equations (16),

(17), it has the following form σ2(T):

òs
p a

w=
+
-

p
T

c

10 D
q

1 z q

1 z q
dq, 182

12 12
2 0

c

A
A

A
( ) ( ) ( )

( )
( )

/

w
a

p

=

=

b w



z q e ,

q 2
10D

M
sin

qc

2
,

q
c

. 19

q

A
12 12

2

A

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

∣ ∣ ( )

( ( ))

Similarly, for ADM, the analytical expressions of u2(T) have
been determined as

òp
w=

+
-

p
u T

c

2 k
q

1 z q

1 z q
dq, 202

eff
D 0

c

D
D

D
( ) ( ) ( )

( )
( )

/

w

=

=

b wz q e ,

q 2
2k

M
sin

qc

2
, 21

D
q

D
eff
D

D

⎜ ⎟⎛
⎝

⎞
⎠

( )

( ) ( )

( ( ))

If we substitute k3eff
D from equation (15) into equations (20),

(21), we obtain

òp a
w=

+
-

p
q dqu T

c

16 D

1 z q

1 z q
, 22

c

D
2

12 12
2 0

D

D
( ) ( ) ( )

( )
( )

/

w
a

p

=

=

b w



z q e ,

q 2
8D

M
sin

qc

2
,

q
c

, 23

D
q

D
12 12

2

D
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⎝

⎞
⎠

( )

( )

∣ ∣ ( )

( ( ))

where c is the lattice constant, q is the phonon wave number,
and M is the mass of composite atoms. From equations (18),
(19), (22), (23), and (6), we have the correlated function
CR(T), which has the following form for any crystal structure:

ò

ò

p
w

w

p

=
+
-

-
+
-

p

p





C T
c

2

1

k
q

1 z q

1 z q
dq

1

k
q

1 z q

1 z q
dq ,

q
c

. 24

R
eff
D 0

c

D
D

D

eff
A 0

c

A
A

A

⎧⎨⎩
⎫⎬⎭

( ) ( ) ( )
( )

( ) ( )
( )

∣ ∣ ( )

/

/

If we substitute Morse potential parameters for fcc crystals
into equation (24), we obtain the correlated function
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3. Numerical results and discussion

We applied equations (18)–(25) to the numerical calculation
for Cu crystal and CuAgX (X=72; 50) alloys. The results of
the theoretical calculation of the Morse potential parameter
and the experimental Morse parameters [10] are presented in
table 1, and the elastic force constants are presented in table 2.
A comparison of the data shows the agreement of the theor-
etical calculations with experimental values and other studies
[9, 14, 10, 11]. By substituting the parameters in tables 1 and
2 into equations (18), (22), (25), we will get the mean square
relative displacement σ2(T), the mean square displacement
u2(T), and the correlation displacement function CR(T) of Cu
crystals and CuAgX (X=72; 50) alloys.

According to the data presented in tables 1 and 2, there is
a significant difference between the correlation oscillation
model and the single-particle anharmonic oscillation model.
The force constant of single-particle anharmonic oscillation
(ADM) keff

D is much greater than keff
A of the correlated

oscillator (ACDM). The reason for this difference is the
determination of the number and mass of atoms oscillating in
two models. For the correlation oscillation model, the number
and mass of atoms are only half those of the single-particle
anharmonic oscillator. If the mass is considered to be con-
centrated in the centre of a mono couple bond for a correlated
oscillation model, a crystal will act as quasi-atoms, which
means that the mass is reduced to equal only half of the
composite atomic mass, as shown in equation (11). The

number of atoms is only half the number of atoms for a
single-particle anharmonic oscillation model because each
quasi-atom is made up of a pair of composite atoms.

Figures 1 and 2 depict the temperature dependence of
σ2(T) and u2(T) for Cu and CuAgX (X=72; 50). They show
a linear relationship to the temperature T at high temperatures.
However, values of σ2(T) are greater than values of u2(T) at
the same temperature, which is evident in figure 2. The
experimental values of σ2(T) (points *) are higher with the
experimental line of u2(T) [11].

Figure 3 illustrates the temperature dependence of the
correlation function CR(T) of Cu crystal and alloys of CuAgX
(X=72; 50). Similar to the graphs depicting the temperature
dependence of σ2(T) and u2(T), they are all linearly propor-
tional to the temperature T at high temperatures, where the
classical limit is applicable. At low temperatures, the curves
for Cu and CuAgX (X=72) contain zero-point energy
contributions - a quantum effect. The calculated results of

Table 1. Morse potential parameters calculated by the current theory and experimental values.

Quantities/Crystals D12(eV) (Present) D12(eV) (Expt. [10]) a -Å12
1( ) (Present) a -Å12

1( ) (Expt.[10])

Cu-Cu 0.3429 0.3528 1.3588 1.4072
CuAgX (X=72) 0.3381 — 1.3634 —

CuAgX (X=50) 0.3376 — 1.3638 —

Table 2. Effective force constants calculated by the current theory and experimental values.

Quantities/
Crystal

-k eVAeff
A 2( )
(Present)

-k eVAeff
A 2( )
(Present)

-k eVAeff
D 2( )
(Present)

-k eVAeff
D 2( )
(Expt.)

-k eVA3eff
A 3( )
(Present)

-k eVA3eff
A 3( )
(Expt.)

-k eVA3eff
D 3( )
(Present)

-k eVA3eff
D 3( )
(Expt.)

Cu-Cu 3.1655 3.4931 5.5889 5.7520 0.6646 0.8070 3.0889 0.9831
CuAgX
(X=72)

3.1423 — 5.0278 — 0.6814 — 2.6874 —

CuAgX
(X=50)

3.1396 — 5.0234 — 0.6423 — 0.8569 —

Figure 1. Dependence on temperature of mean square relative
displacement σ(2)(T) for Cu, CuAgX (X=72; 50).
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σ2(T), u2(T) for the Cu crystal fit well with the experimental
values [10], [11]. Thus, it is possible to infer that the calc-
ulation results of the current theory for CuAgX (X=72; 50)
are reasonable. Moreover, the values of σ2(T) are greater than
those of u2(T), making the extinction coefficients in EXAFS
of the correlation oscillation model larger than those of single-
particle anharmonic oscillation models.

An interesting feature in all three graphs is the curve of
CuAgX (X=72; 50) intermetallic alloys. For the CuAgX
(X=72) alloy, the graph curve format is similar to the curve
of pure Cu crystal, meaning that the structure of the CuAgX
(X=72) alloy is not broken, and the structure type is still
fcc. However, for the CuAgX (X=50) alloy, the graph has
an irregular shape, does not zero-point energy, and does not
follow the rules like Cu and CuAgX (X=72) at low tem-
peratures. At high temperatures (about over 200 K), the curve

gradually returns to linear forms like Cu and CuAgX
(X=72) crystals. It is speculated that for the CuAgX alloy at
a ratio of 50:50, the atoms are no longer closely linked to each
other in the style of the fcc lattice at low temperatures
(meaning that no CuAgX alloy material exists in this ratio,
X=50). As the temperature increases, the correlation
between the atoms changes until the temperature reaches a
certain value (over 200 K). The fcc lattice order slowly
recovers, and the graph curve of CuAgX (X=50) is linear to
the temperature at high temperatures, similar to the results for
Cu and CuAgX (X=72). This is entirely consistent with
studies done with other model theories and experiments with
the CuAgX alloy at the ratio of X=50 [8, 12].

4. Conclusions

In this work, a method was deduced to analyze the correlation
effects of the CR(T) displacement correlation function based
on DWF, the mean square relative displacement σ2(T) and the
mean square displacement u2(T) in EXAFS spectra. The
theory was applied to pure metals with an fcc structure and
their alloys with different ratios.

The analytical expressions of CR(T), σ
2(T), and u2(T)

were inferred based on Debye models. The advantage of these
models is based on the use of anharmonic effective potentials,
which take the contributions of all of the nearest neighbouring
atoms into account. The difference in the effective elastic
force constant causes a difference in the thermodynamic
properties of the crystals, and the thermodynamic properties
are described by the correlated oscillation model and the
single-particle correlation oscillation model. The difference in
the number and mass of vibrating atoms in these models
causes the difference in thermodynamic properties.

The correlation effects and the quantities σ2(T), u2(T),
and CR(T) are dependent on the temperature. Their values are
all linearly proportional to the temperature T at high tem-
peratures, where the classical limit is applicable. At low
temperatures, they contain zero-point energy contributions - a
quantum effect.

The crystal lattice of the CuAgX (X=50) alloy showed
an abnormal disorder at low temperatures, where Cu and Ag
atoms no longer had linked lattice structures according to the
fcc structure. This result discovered in the studies from the
experiment [12] and some theoretical studies following other
models [7, 8]. These anomalies may bring many new inter-
esting in-depth studies for researchers specializing in mate-
rials science.

The good agreement between the calculation results of
the current study and the values obtained from experiments
and calculations by other models proves the effectiveness of
the present theory in EXAFS spectrum data analysis, espe-
cially for the study of correlation effects.
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Figure 2. Dependence on temperature of mean square relative
displacemen u2(T) for Cu, CuAgX (x=72; 50).

Figure 3. Temperature dependence of the correlation function CR(T)
for Cu, CuAgX (X=72; 50).
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