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Nguyen Van Hung, Vu Kim Thai, and Nguyen Ba Duc
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Abstract. In this work a new quantum statistical procedure for calculation of ther-
modynamic parameters of bee crystals in X-ray Absorption Fine Structure (XAFS)
theory, using anharmonic-correlated Einstein model, has-been presented. The ex-
pressions were derived for spring constant, Einstein temperature, Einstein frequency,
first cumulant or net-thermal expansion, second cumulant or Debye- Waller factor,
third cumulant and thermal expansion coefficient. The anharmonic contributions
have been included and the theory is valid Jor all temperatures. Numerical calcula-
tions were carried out for bee crystals Mo and W, The results provide thermodynamic
properties of these systems.

I. INTRODUCTION

It is known that XAFS is the result of -scattering of photoelectron by surrounding
neighbors of absorbing atom. Therefore, to get correct structural information of sub-
stances from XAFS spectra it is very important to know their thermodynamic properties
at any temperatures, especially with including anharmonic contributions [1-3]. The cu-
mulant expansion approach [4,5] has been developed to interpret these effects in XAFS
spéctroscopy. Thermodynamic parameters of fcc crystals described by cumulants have
been evaluated [6]. This work is the next step of [6] devoted to calculation of thermody-
namic parameters of bec crystals in XAFS theory, using anharmonic - correlated Einstein
model [7]. Quantum statistical theory with phonon interaction procedure was used to
derive the expressions for spring constant, Einstein temperature, Einstein frequency, first
cumulant or net - thermal expansion, second cumulant or Debye - Waller factor, third
cumulant and thermal expansion coefficient. They describe the temperature dependence
of these values including the anharmonic effects. Numerical calculations have been carried
out for bee crystals Mo and W. The results provide thermodynamic properties of these
systems. e £

II. THEORY

The derivation of expressions for thermodynamic parameters of bee crystals in this
work is based on quantum statistical theory with quasi-harmonic approximation, according
to which the Hamiltonian of the system is written as a harmonic term with respect to the
equilibrium at a given temperature, plus an anharmonic perturbation
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p2 ' | A P2 5 :
+ UE(CL) = Hp + UE(a) - (SUE(’y); Hy = 20 + ikeffy : (1)

y gy 1

where

e MoM
Y= g=r—"r0 @=<T2>; #:Mo-—l-M;

<y>=0. (2)

Here z is deviation of the instantaneous bond length n of two atoms from their
equilibrium distance To OT the location of the interaction potential minimum; Mo and M
are the mass of absorbing and backscattering atom, respectively; the brackets <> denote

a thermal average. According to anharmonic-correlated Einstein model the interaction

" 'between absorber and backscatterer is via an offective anharmonic Einstein potential

UE(fl‘) = %]Ceffq;z 4 k3m3 e U(:L) +Z U(ﬁ:mRm-Rﬁ>’ : (3)
J#i
which includes anharmonicity parameter ks describing an asymmetry or skew in the pair
distribution function, as well as, contributions of & small atom cluster surrounding the
absorbing and backscattering atom, so the spring constant now becomes an effective one
keps. The contributions of such cluster is taken into account by the sum % which is over
absorber (i = 0) and backscatterer (¢ = 1) and by the sum j which is over all their near
neighbors excluding the absorber and backscatterer themselves. The latter contributions
are described by the term’ U(z), and 2 is the unit bond length vector.
From Ed_s._(l—3) the interacting effective Einstein potential is given by

Us(s) = Us(a) + ghesst? + 6UB (W) @

In this work the interaction between each pair of atoms in the single bond is via
an anharmonic Morse potential. Expanded to third order about its minimum this model

becomes
U(z) = D(e™** — 9e—%) ~ D(—1 +a’a’® — oBz® + .., (5)

where D is the dissociation energy, and 1/a corresponds to the width of the potential. It
is usually sufficient to consider weak anharmonicity (i.e., first - order perturbation theory)
so that only the cubic term in this equation must be kept. .

Substituting Eq.(5) into Eq.(3) with considering Fq.(4) and using the values (Roy-Rij) -

from the table 1 for summation we obtain

| 11 il 1 15 .5
kesf = —E—Da“ +6k3a = Da? (—3— - —i—aa> = uw%;' k= -—ZDa3; (6)

g T §
§Up(y) = <—§—Da2a + 3k3a2>y{— ksy® ~ Da? (—gay — Zay3>' (7)
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(1) ’ b § (R01 -Rij)
0 0 0 0
1 —a,/2 ~a,/2 a,/2 1
2 —8,/2 dyl2 a,/2 1/3
(2) 3 a,/2  —a,/2 2,/2 1/3
\eir 4 a,/2 - - ) -1/3
M 5 a,/2 a,/2 ~2,/2 '
a5 6 T o N —a,/2 —a,/2 -1/3
35 7 —a,/2 a,/2 —a,/2 ~1/3
i —a,/2 ~a,/2 —a,/2 1/3
(3) Table 1. Coordinations of 8 neighbors of a bee crystal with ao as lattice constant surrounding the
’ backscatterer at (0,0,0) and the values of (R, R ).
air .
the '
one Using these equations we got Einstein frequency wg and Einstein temperature 0p
ver 1/2 2 i 1/2
Doyl s 8w h [Da? 11 15
= | —— = — < 0 = —_—]———— - — 1
_ o= [BE (G -] s = |2 g . @
s where kp is Boltzmann’s constant. The cubic anharmonicity parameter k3 is included in
all Egs.(6-8). Now we use first- order thermodynamic perturbation theory [8,9] to derive
the expressions for the cumulants and thermal expansion coefficient. The atom vibration
is quantized as phonon and anharmonicity is the result of phonon interaction. Therefore,
(4) we express ¥ in terms of annihilation and creation operators, @ and at, ie., ’
via ' N '
del | y=0"@a+at); o°=(h/2uwr)"?, (9)
and use the harmonic oscillator states | n > as eigenstates with eigenvalues E, = nhwg
\ _ (ignoring the zero point energy for convenience).
(5) Using the derivation procedure as for the case of fcc crystals [6] we obtain the first
Tt cumulant or net-thermal expansion
ry) ' e
1835w 142z 45
(L) s e el e = o 10
5 % 968 Do 1—z 4477 (10)
- the second cumulant or Debye-Waller factor (DWEF):
3 wg 1+ 2 v
R B 11
O T ®Da?1-2 - (1L

(6)

the third cumulant:

: S@ _ 135 (hwg)? 1+ 10z + 22
(7) 710648 D?a®  (1—2)?

(12)

)
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and the thermal expansion coefficient:

135 kp z(Inz)?
“T = 484 Dar (1 — 2)?’ {15}
as well as the relation: s
arrTo? 32(1 + 2)in(1/2)

o®) (1 —2)(1+ 10z + 2%)

(14)

In all the above formulas r is the radius of the first shell and the temperature
variable z = e~92/T is determined by 0r .The values of oW, 2,60 ar, n Eqs.(10-13)

are dependent on the temperature T.

We use the approaches:

hwg

limpaes =1— —=;  limTacz =0, (15)

kT’

to get high-temperature limit, where the classical approximation is valid, and low tem-

‘perature limit, where the quantum theory must be used. The above formulas (10-14) in

these limits are presented in table 2

Values ' T—0 T— o
c® 135hm 5 (1+22)/968Da 135kBT / 484Da
o’ " 3he,(1+22)/22Da’ 3k,T/11Dat”
o ' 135(ho, )* (1 +122)/10648D%.’ 405(k, T) /2662D%
Oy 135k yz(In 2)* (1+ 2z)/ 484Dour 135k, / 484Dour
o, rTo? /6® 3zIn(1/z) 1/2

Table 2. Expression of G(l)-, & Nej (3), oL and their relation in low- temperature (T — 0) and
high-temperature (T —> c0) limits.

Note that the results for bee crystals presented above are different - from those for
fcc [6] not only in spring constant kesg, cubic anharmonic parameter ks, anharmonic
perturbation potential 6Ug, Einstein frequency wg and Einstein temperature Og presented
in Egs.(6-8), but also in the temperature variable z. All they lead to the difference
in the thermodynamic parameters presented in Egs.(10-14). Nevertheless, their form of
temperature dependence is similar, so that we got the same form of the expression for the
relation arrT'o?/c®) which approaches the classical value [2] of 1/2 at high temperatures
as the conclusion by classical method and experiment [2,10].
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III. NUMERICAL RESULTS AND DISCUSSION

Now we apply the formulas derived in the previous section to numerical calculation
for bcc crystals Mo and W. The parameters D and a of the Morse potential were taken V
from Ref, 11; they were obtained using experimental values for the energy of subhmatlon
the compressibility, and the lattice constant.

In table 3 we present the values of k.r¢ , wg, and g calculated by present procedure

§ d W. = 7= ¢ o 5
for Mo an M: %lqb&l&m'ww'/% 9YEA 2= 42 , 0»@57
Sample Bond Kea(N/m) o, (x10"” Hz) 0; (K)
Mo Mo-Mo 107.289 3.659 280
w W-W 115.960 2.748 20 D,,= §.9
Table 3. Calculated values of keg, @ and 0 of Mo and W. | -
'[':e, —~2=54c
10 % CI_- Y 2‘ =S¢
X ... Present theory, W- _ Prasent theary, Mo D - L}!?Z
~ B ___Present theory, Mo o A ... Present theary, W i
> 2
= i R - |
= e
b )
r\é) "o 10
s}
il

) S \ L L L :
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Figure 1. Temperature dependence of our"

calculated second cumulant o or Debye-

0 10 20 30 40 &0 60 70

Figure 2. Temperatilre dependence of our

- calculated third cumulant ® for Mo and W .

They contain zero-point energy contributions

Waller factor for Mo and W. They contain
zero-point energy contributions at low
temperatures and are linear proportional to
T at high temperatures.

at low temperatures and are proportional to T*
at high temperatures

Figure 1 shows the temperature dependence of our calculated second cumulant g2
or DWF of Mo and W. They contain the zero point energy contribution and are linear
promotional to the temperature T at high temperatures as the conclusion of classical
theory and experiment [2,10]. Figure 2 illustrates the temperature dependence of our
calculated third cumulant .a(3> of Mo and W. They contain zero point energy contributions
and are proportional to T2 at high temperatures as concluded by classical theory and
experiment [2,10]. The third cumulant is the result of anharmonic effects, that is why it is
very small and can be neglected at low temperatures. The temperature dependence of our
calculated thermal expansion coefficient ar of Mo and W is presented in Flgule 3. They
have the from of specific heat, thus reflecting the fundamental of solid state theory, that
the thermal expansion is the result of anharmonic effects and is proportlonal to specific
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24 o(®) determines the te'r'nf)erature, above which this relation
of 1/2 (Figure 4), that means, the classical limit is valid
ated Einstein temperature g = 280K

heat [9]. The relation arrTo
approaches the classical expression

(7. In our case this temperature is about ¢orrel
for Mo and g = 210K for W. Below this temperature the relation is strong temperature

dependent and quantum theory must be used.

08 : —— 05
0.45}
07t
___________________ 04t
g~ MBS 035}
& & :
s b 05 E 03} ‘I‘
g B e/ Present theary, W F,"_; DBl h
i ___ Present theory, Mo 3 02 . :.' ___Present theary, Mo 1
0154 ' ..... Present theory, W
02 o1k :1
0t n.ns[ /
g VI e M e P I A—— e
0 i o s ap S0 60 700 B0 0 & 10 1@ 20 2 N0 I A0
™ ™
Figure 3. Temperature dependence of our Figure 4. Temperature depgndence of our
calculated thermal expansion coefficient oy for Mo calculated relation oTTo /5™ for Mo and W.
and W . They have the form of specific heat and They approach the classical value % at high

approach constant values at high temperatures. temperatures. :

[V. CONCLUSION

In this work a new quantum statistical procedure for calculation of thermodynamic
parameters of bce crystals in XAFS - theory using anharmonic-correlated Einstein model

with Morse pair potential has been presented. The results are valid for all from low to -

high temperatures. A
Effective spring constant and anharmonic perturbation potential contain the cubic

anharmonicity parameter which influence on Einstein frequency and Einstein temperature
leading to influence on the thermodynamic parameters such as cumulants and thermal
expansion coefficient.

The above results express thermodynamic properties of bee crystals. The first
cumulant or net thermal expansion describing asymmetry of interacting potential, third
cumulant, and thermal expansion coefficient are anharmonic effects, the second cumulant
or DWF describes un clastic effect of photoelectron. They are different from those of
fec crystals [6] due to the difference in kes; and 6Ug, but they have the same qualities
that o1, 62, 0(® contain zero point energy contributions at low temperatures and at high
temperatures o ~T,0® ~ T2, arrTo?[o®) — 1/2 as the conclusion of classical theory
and experiment [2,10], and o has the from of specific heat, thus reflecting the fundamental

of solid state theory.
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Numerical results presented in table 2, as well as, Figures 1-4 illustrate the derived
formulas for the case of Mo and W. They can be used for evaluation of experimental results.
when the measured results are available.

With the help of the above thermodynamic parameters we can get correct structural
information from XAFS of bcc crystals at any temperatures [2-6,10,12].
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TINH CAC THAM SO NHIET PONG CUA CAC TINH THE CAU TRUC BCC
TRONG LY THUYET XAFS

Nguyén Vin Hiung, Vi Kim Thai Nguyén B4 Dic
Khoa Vat Ly, Dgi hoc Khoa hoc Ty nhién - DHQG HaNgi

Bai nay trinh bay mot phuong phdp thong ké lugng t& méi dé tinh cic tham s
nhiét dong ctia cdc tinh thé cdu tric 13p phuong tam khéi (bec) trong lythuyét vé cau
trdc tinh t& cda hip thu tia X (XAFS) véi st dung md hinh Einstein tuong quan phi diéu

hoa. Céng trinh d3 din ra céc biéu thitc ddi véi hé s dan hoi, tin s6 Einstein, nhiét do

Einstein, cumulant bic 3 va hé s6 dan nd nhiét. Céc cong thirc chita cdc déng gop phi
dieu hoa va 1y thuyét duoc thda mén véi moi nhiét d6. Céc tinh s da dugc thyc hién
déi véi Mo va W. Céc k&t qua thé hién cédc tinh chat nhidt dong ctia cdc hé trén.

E.D.Crozier, J.J.Rehr and Ingalls. In X-ray Absorptzons Edited by D.C.Koningsberger -




