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Abstract
The extended x-ray absorption fine structure (EXAFS) spectroscopy is one of the powerful
techniques for investigating local structures of crystalline as well as amorphous materials. It
provides different structural information at various high temperatures due to anharmonicity. This
work advances the anharmonic correlated Einstein model in EXAFS to investigate how pressure
and temperature affect the Debye-Waller factor and thermodynamic parameters of an
intermetallic alloy. By using the anharmonic correlated Einstein model, analytical expressions
derived include the effective elastic constants, the EXAFS cumulants, the anharmonic factor, and
the thermal expansion coefficient under high temperature and pressure effect. The results show
that the anharmonicity of the thermal atomic vibration and the consequences of pressure are both
essential for the thermodynamic parameters and the EXAFS Debye-Waller factor, as well as
showing that the anharmonic contributions are necessary for the EXAFS spectrum. Numerical
calculations of these thermodynamic quantities performed for pure Cu and Ag and CuAg72 alloy
and the results are consistent with those obtained experimentally and from other theories.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Extended x-ray absorption fine structure (EXAFS)
spectroscopy has developed into a powerful probe of atomic
structure and the high-temperature thermodynamics of sub-
stances due to anharmonicity [1, 2]. The formalism for
including anharmonic effects in EXAFS often written based
on the cumulant expansion approach. Many methods have
developed to study the temperature dependence of EXAFS
cumulants. However, to the best of our knowledge, no
theoretical calculations have been done to predict the rela-
tionship of cumulants and thermodynamic parameters on
temperature with effects of pressure in EXAFS spectra of
cubic crystals. It requires a more accurate interatomic inter-
action form for metallic systems, such as the many-body
embedded-atom potentials.

Numerous methods have evolved to investigate how
temperature affects the EXAFS cumulants, such as path-int-
egral effective-potential theory [3], the statistical moment
method [4], the ratio method [5], the Debye model [6], the
Einstein model [7], and the anharmonic correlated Einstein
model (ACEM) [8]. Several groups have applied ACEM
theory to EXAFS to study how the thermodynamic properties
depend on temperature with the effect of the material doping
ratio [9–12]. However, no reports to date have discussed how
the thermodynamic parameters and the Debye–Waller factor
(DWF) depend on temperature and pressure for Cu, Ag, and
their intermetallic alloy CuAg72. A CuAg alloy contains the
elements Cu and Ag, with the Ag atoms referred to as the
substitution atoms and the Cu atoms referred to as the host
atoms. CuAg72 has a ratio of 72% Ag and 28% Cu (±1%)
and is also known as CuSil or UNS P0772 (note: CuSil should
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not be confused with Cusil-ABA, which has the composition
63.0% Ag, 35.25% Cu, and 1.75% Ti). It is a eutectic alloy
and is used primarily for vacuum brazing [9].

Herein, we use EXAFS theory [8] to investigate how the
DWF depends on the temperature at high pressure. We also
investigate thermodynamic parameters such as (i) the effec-
tive spring constant, (ii) the thermal expansion coefficient,
(iii) the anharmonic factor, and (iv) the Einstein frequency
and temperature and how they depend on the temperature at
ambient pressure for CuAg72.

2. Formalism

EXAFS usually derived by using the cumulant-expansion
approach, which contains the second cumulant s2 corresp-
onding to the parallel mean-square relative displacement
(MSRD) [5]. The second cumulant - often called the DWF - is
an important factor in EXAFS analysis because the thermal
lattice vibrations and high pressure strongly influence the
EXAFS amplitudes through the function s-e 2 k2 2 [1, 13]. For
simplicity, the temperature and pressure dependences of the
DWF are denoted as s T2 ( ) and s p ,2 ( ) respectively. One way
to investigate how temperature and pressure affect the
EXAFS cumulant is to combine ACEM with EXAFS [8, 14],
which gives results that are consistent with experiments.
ACEM uses the anharmonic effective interaction potential
under pressure p, and the interatomic distance x is supple-
mented by dr p( ) to give
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where keff is the effective spring constant, k3eff and k4eff are
the effective cubic and quartic anharmonic parameters,
respectively, which cause the asymmetry in the pair-dis-
tribution function, d = -r p r p r 0( ) ( ) ( ) is the pressure-
induced change in the interatomic distance, = -x r r0 is the
instantaneous bond length between atoms from the equili-
brium location, r is the spontaneous bond length between
absorbing and backscattering atoms, and r0 is the equilibrium
value of r. ACEM is determined by the vibration of single
pairs of atoms, with M1 and M2 being the masses of the
absorber and backscattering atoms, respectively. The oscil-
lations of the absorber and backscattering atoms depend on
their neighbors, so the interaction potential in equation (1) is
written in the form of an anharmonic effective interaction
potential under ambient pressure, namely
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In equation (2), V x, p( ) is the interaction potential between
absorbing and backscattering atoms, the sum i is over
absorber ( =i 1) and backscattering ( =i 2) atoms, and the
sum j is over all nearest neighbors whose contributions are
described by the term V x, p( ) excluding the absorber and
backscattering atoms themselves. Furthermore, Mi is the

atomic mass of atom i, μ is the reduced atomic mass, namely
m = +M M M M ,1 2 1 2( )/ and R̂ is the unit vector for the bond
between atoms i and j. Therefore, this effective pair potential
describes not only the interaction between absorber and
backscattering atoms but also how the nearest-neighbor atoms
affect such interactions, which is the difference between the
effective potential used in this work and the single-pair
potential [15] or single-bond potential [7], which consider
only each pair of immediate-neighbor atoms [i.e., only V x( )]
without considering the remaining terms on the right-hand
side of equation (2). The atomic vibration is calculated using
a quantum statistical approach with an approximate anhar-
monic vibration in which the system Hamiltonian includes a
harmonic term H0 with respect to the equilibrium at a given
temperature plus an anharmonic perturbation, namely

d= + +H H V a V a . 30 E E( ) ( ) ( )

Here, the interaction potential V aE( ) and anharmonic
perturbation dV aE( ) are
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where a is the thermal expansion coefficient with
= á ñ = - á ñ =a x , y x a, y 0. Equation (3) leads to the

ACEM interactive potential
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which is an anharmonic potential of Morse pairs and is
appropriate for approximating the structure of cubic crystals.
The Morse anharmonic potential is
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where = -D V r0( ) is the dissociation energy, so it has
Electron-Volt (eV) unit, and a12 (Å−1) is the width of the
potential. We expand equation (5) in x to obtain the third-
order term that describes approximately the cubic structure of
doped crystals. When considering only crystals with orderly
doping, we also assume that the lattice is not corrupted, and
we designate Cu as the host atom with indicator 1 and Ag as
the substituted atom with indicator 2. ACEM uses the Morse
anharmonic pair potential to describe the pair interaction
between atoms, namely
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For simplicity, we approximate the parameters of the Morse
potential in equation (6) at a given temperature by
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where c , c1 2 are the doping ratios (%) of the intermetallic
alloys. We calculate the sums in the second term of
equation (2) and compare the results with the terms of
equations (1) and (6) to obtain the effective force constant
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To derive analytical expressions for the cumulants, we
use perturbation theory [13, 14]. Atomic vibrations are
quantized as phonons, and the phonon–phonon interaction
leads to anharmonicity, with the phonon vibration frequency
taking the form

w m p= x p k qa q a, 2 sin 2 , , 7eff
0

12 0 0( ) ∣ ( )∣ ∣ ∣ ( )/ / /

where a0 is the lattice constant at temperature T, and q is the
phonon wave number. The correlated Einstein frequency and
temperature at ambient pressure are respectively
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Using quantum thermodynamic perturbation theory [12] and
equations (1), (2), and (8), we obtain the first three EXAFS
cumulants as functions of the ambient pressure and temper-
ature. For the first cumulant or net thermal expansion, we
have
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for the second cumulant or the DWF we have
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and for the third cumulant we have
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We also obtain the thermal expansion coefficient aT and the
anharmonic factor b T, p( ) as functions of ambient pressure
and temperature as
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The second cumulant s2 contributes to the anharmonic
EXAFS amplitude, while s 1( ) and s 3( ) contribute to the phase
shift of the EXAFS due to anharmonicity. Note that s ,1( ) s ,3( )

and a p T,( ) contain the anharmonicity parameter k3eff and
exist only when this parameter is included, which is why s ,1( )

s ,3( ) and a p T,( ) must be considered when calculating the
anharmonic effects in EXAFS. Under ambient pressure, the
factor β is proportional to the temperature and inversely
proportional to the shell radius, which is consistent with the
anharmonicity obtained in experimental research into cata-
lysis [16], and R is considered as the particle radius. In
equations (9)–(13), q= -z p T T, exp E

0( ) ( )/ is the heat and
pressure function, which describes how the cumulants, the
thermal expansion coefficient, and the anharmonic factor
depend on the absolute temperature T and pressure applied to
the intermetallic alloy.

3. Results and discussion

For Cu-Cu and Ag-Ag pure metals and the alloy CuAg72,
table 1 gives the calculated and experimental [17] parameters
of the Morse potential, D12 and a ,12 respectively. Substituting
the parameters D12 and a12 from table 1 into equation (8),
with the Boltzmann constant = ´ - -k 8.617 10 eVKB

5 1 and
Planck’s constant = ´ - 6.5822 10 eV.s,16 we calculate the
values of the Einstein frequency and temperature at ambient
pressures up to 14 GPa for Cu-Cu, Ag-Ag, and CuAg72
crystals, and hence deduce the local force constant. Table 2
lists the results, where keff

exp t. is the local force constant
deduced from the results of Okube et al [18, 19].

Inserting the thermodynamic parameters from tables 1
and 2 into equations (1) and (9)–(13) gives the effective
anharmonic potential V x, pE( ) as a function of the departure x
from equilibrium bond length and ambient pressure (see
figure 1). The cumulants s nn ( )( ) depends on the absolute
temperature T and are influenced by pressure up to 14 GPa
(see figures 2–5). Figure 6 shows the thermal expansion
coefficient a T, p( ) as a function of absolute temperature T
and pressure, and figure 7 shows the anharmonic fac-
tor b T, p .( )

Thermodynamic properties and anharmonic effects of
materials depends on the atomic interaction under pressure
effect described by the anharmonic interatomic effective
potentials V(x) presented in figure 1. Anharmonic interatomic
effective potentials V(x) of CuAg72 calculated using the
present theory compared to the experimental values [20] and
other theories [18, 19]. According to present calculated, the
blue solid line describe the anharmonic effective potential for

Table 1. Parameters of Morse potential for pure metals and their
intermetallic alloy.

Crystal D eV12( ) D eV12
exp t.( ) a -Å12

1( ) a -Å12
Exp. 1( )

Cu-Cu 0.3429 0.3528 1.3588 1.4072
Ag-Ag 0.3323 0.3253 1.3690 1.3535
CuAg72 0.3381 — 1.3634 —

3
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CuAg72 at temperature 300 K, and the dashed curve describe
it under the influence of pressure of 14 GPa. The results
received align closely with those obtained from the other
theories [18, 19] (red solid line), and experimental vulues [20]
indicating that the coefficients keff, k3eff, and keff

0 calculated
by using the ACEM (given in table 2) are in reasonable
agreement with measurements and the calculations of Okube
et al [19] and experimental results [20].

Figure 2 shows our calculation of the second cumulant or
DWF as a function of the doping ratio (DR) at 300 K and an
ambient pressure of 14 GPa for the crystalline alloy CuAg72.

These results illustrate that for DRs of 0%–50% and 50%–

100%, the DWF varies linearly with the DR (with different
slopes in each range). For DR=100% (i.e., where the Ag
content is 0% and the Cu content is 100%) the calculated
values are in good agreement with experimental values
determined at 300 K (see symbols *, ,) [21–23]. However,
there are breakpoints in the lines at 50% DR, which means
that we do not have ordered atoms at DR=50%. Thus, the
Cu-Ag alloy does not form an ordered phase at the molar
composition of 1:1 (i.e., the alloy CuAg50 does not exist),
and this result is consistent with the findings of Kraut and
Stern [10]. As the ambient pressure increases, the DWF
decreases: with 0% Ag, 100% Cu, and 101 kPa (i.e., normal

Table 2. Effective parameters describing anharmonicity.

Crystal k eVAeff
2( ) k eVAeff

Expt. 2( ) k eVAeff
0 2( ) w 10 HzE

13( ) w 10 HzE
0 13( ) q KE ( ) q KE

0 ( )

Cu-Cu 3.1655 3.4931 3.6403 3.0889 4.7710 236 364
Ag-Ag 3.1139 2.9797 3.5810 3.3933 3.6585 176 279
CuAg72 3.1423 — 3.6138 2.6874 4.3623 207 333

Figure 1. Anharmonic effective potential of CuAg72 (4th order).

Figure 2. Second cumulant (DWF) depends on doping ratio (DR)
and pressure (p) for CuAg72 alloy.

Figure 3. The first cumulant for Cu, Ag, CuAg72.

Figure 4. The second cumulant for Cu, Ag, and CuAg72.
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atmospheric pressure), we have DWF=0.2330 Å2 (for 14
GPa, DWF=0.2241 Å2); with 100% Ag, 0% Cu, and 101
kPa, we have DWF=0.1796 Å2 (for 14 GPa,
DWF=0.1718 Å2). At the breakpoints, we have
DWF=0.2005 Å2 and 0.1928 Å2 at 101 kPa and 14 GPa,
respectively. Thus, increasing the ambient pressure decreases
the EXAFS amplitude by reducing the atomic MSRD that
characterizes the EXAFS DWF.

Figure 3 shows the first cumulant s 1( ) as a function of
temperature at the pressure of 14 GPa for Cu, Ag (figure 3(a)),
and CuAg72 (figure 3(b)). At approximately the zero point
with 101 kPa and 14 GPa ambient pressure, we have
s = 0.00271( ) Å and s = 0.00471( ) Å, respectively; at 700 K,
we have s = 0.01841( ) Å and s = 0.02011( ) Å, respectively.
Thus, as the pressure increases, the first cumulant also
increases, but at low temperature it deviates more, meaning
that the pressure causing the net thermal expansion is more
pronounced at low temperatures.

Figure 4 shows the second cumulant or DWF as a
function of absolute temperature with the effects of ambient
pressure for Cu-Cu, Ag-Ag (figure 4(a)), and CuAg72
(figure 4(b)) and compares these results with experimental
results [21, 22]. The calculated values for the first cumulant
(figure 3(b)) and the DWF (figure 4(b)) for different DRs at
the pressure of 14 GPa are proportional to temperature from
around 100 K and above.

Consider the change in the second cumulant (DWF) for
different temperatures. At approximately 0 K, the DWF
increases from s 2( )=0.0026 Å2 to s 2( )=0.0046 Å2 as the
pressure increases from normal atmospheric pressure up to 14
GPa. At 700 K, the DWF increases from s 2( )=0.018 Å2 to
s 2( )=0.0197 Å2 as the pressure increases from normal
atmospheric pressure up to 14 GPa. At low temperatures, the
DWF changes more than it does at high temperatures because
the change in ambient pressure from 101 kPa to 14 GPa
causes a greater MSRD of the atoms (or second cumulant
s 2( )). Furthermore, figure 4 shows that from room temperature
upward (approximately 300 K), the DWF remains almost
constant as the ambient pressure increases, so the ambient
pressure has a stronger effect at low temperatures.

Figure 5 shows the third cumulant s 3( ) for Cu-Cu, Ag-Ag
(figure 5(a)), and CuAg72 (figure 5(b)) as a function of
absolute temperature and at normal atmospheric pressure (101
kPa) and at the pressure of 14 GPa. The calculated results for
Cu-Cu and Ag-Ag are consistent with experimental results
[21–23] at normal atmospheric pressure. At 0 K for both 101
kPa and 14 GPa, the third cumulant s 3( )≈0, but as the
temperature increases, s 3( ) for CuAg72 decreases with pres-
sure: at 700 K, we have s 3( )=0.0026 Å3 at 101 kPa and
0.0023 Å3 at 14 GPa. Thus, high ambient pressure reduces the
asymmetry of the atomic interaction potential at higher
temperatures.

The results shown in figures 3–5 for CuAg72 at all
pressures are very similar to the results for Cu-Cu, demon-
strating the consistency between theoretical and experimental
results. The calculated first three cumulants contain zero-point
contributions at low temperatures, resulting from an asym-
metry of the atomic interaction potential due to anharmonicity

Figure 5. The third cumulant for Cu, Ag, and CuAg72.

Figure 6. Net thermal expansion coefficient depend T, p.

Figure 7. Graph of Anharmonic Factor.
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even at high pressure, which is consistent with established
theories [1, 7, 8, 13].

Figure 6 shows the thermal expansion coefficient aT for
Cu-Cu, Ag-Ag (figure 6(a)), and CuAg72 (figure6b) as a
function of absolute temperature with the effects of ambient
pressure. The calculated results for Cu-Cu are consistent with
experimental results [21] at normal atmospheric pressure;
however, the result for CuAg72 is deflected from 70 K−1 to
400 K−1 when the ambient pressure is 14 GPa, which shows
that because of the effect at high pressure, the thermal
expansion coefficient aT for CuAg72 is reduced significantly
in the room-temperature range. However, the thermal
expansion coefficient for CuAg72 depend of T and CuAg72
depend of T, p changes very little at high pressure when the
temperature exceeds 700 K.

The graph of aT has the form of the specific heat CV, thus
reflecting the fundamental principle of solid-state theory,
which states that thermal expansion results from anharmonic
effects and is proportional to the specific heat CV [13, 24].
Our calculated values of aT approach the constant value aT

0 at
high temperatures and vanish exponentially with q TE/ at low
temperatures, which is consistent with the results of previous
research [22–24].

Figure 7 shows the anharmonic factor b T( ) as a function
of absolute temperature and pressure for CuAg72. For both
normal and high pressure (14 GPa), b T( ) is negligibly small
at low temperature and increases strongly when the temper-
ature exceeds 100 K. At normal atmospheric pressure, we
have qE=176 K for Ag, qE=236 K for Cu, and qE=207
K for CuAg72. At high pressure, we have qE

0 =279 K for
Ag, qE

0 =364 K for Cu, and qE
0 =333 K for CuAg72. The

results shown in figure 7 are consistent with experimental
results [21], which demonstrates that our calculations for
CuAg72 are appropriate for normal atmospheric pressure. At
temperatures above 100 K with increasing pressure, the
anharmonic factor b T0 ( ) is less than at normal pressure b T ;( )
in other words, b T0 ( )= 0.3125 b T( ) at 100 K,
b T0 ( ) = 0.7439 b T( ) at 300 K, and b T0 ( )=0.898 b T( ) at
700 K. Thus, the anharmonic factor describes the temperature
dependence of the anharmonic EXAFS theory under the
influence of high ambient pressure.

4. Conclusions

In this work, based on quantum statistical theory and by
applying the effective ACEM to EXAFS spectra, we derive
analytical expressions for the temperature dependence of the
cumulants and thermodynamic parameters of crystalline Cu,
Ag, and their alloy CuAg72 under the influence of pressures
up to 14 GPa. The expressions for the second cumulant or
DWF, the thermodynamic parameters, the effective force
constant, and the correlated Einstein frequency and temper-
ature for Cu, Ag, and CuAg72 agree with the known prop-
erties for these quantities. The expressions for calculations
involving orderly doped crystals have forms similar to those
for pure crystals.

Figures 1–7 show the cumulants and thermodynamic
parameters for doped crystals as functions of absolute temp-
erature and pressure. The calculated results are consistent
with experimental results and other studies of Cu and Ag, and
the results for CuAg72 are coherent. Thus, the method
developed herein, which is based on applying the ACEM to
EXAFS, is appropriate for calculating and analyzing the
cumulant and thermodynamic properties of intermetallic
alloys.
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