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Abstract

Reported here are expressions temperature dependence under pressure effects for the mean square
displacement, the mean square relative displacement, the correlation displacement function of atoms,
and the ratio of the relationship between the quantities due to anharmonicity under pressure effects in
extended x-ray absorption fine structure spectra. The expressions are determined using the
anharmonic correlated Debye model and the anharmonic Debye model. Complicated calculations
due to the many-particle effects and anharmonic properties are replaced by a calculation based on the
effective anharmonic potential, including the interaction of absorbing and scattering atoms with their
nearest-neighbour atoms. Based on the Debye—Waller factor, the difference between the mean square
relative displacement and mean square displacement is analyzed, and their ratios are calculated. This
work is applied to face-centered cubic crystals and their alloys. Numerical results for copper (Cu-Cu),
silver (Ag-Ag) crystals and copper—silver alloys Cu,Ag, _ agree with experimental values and other
studies.

1. Introduction

Thermal vibrations and disorder in Extended x-ray Absorption Fine Structure (EXAFS) give rise to the Debye-
Waller factor (DWF). The DWF is considered to correlated averages over the Mean Square Relative
Displacement (MSRD) o for a pair of absorber and backscatter atoms, in comparison, neutron diffraction refers
to the Mean Square Displacement (MSD) u* of a given atom. The functions o* and u” are closely related, from
them, the displacement—displacement correlation function Cg can be deduced to describe the correlation effects
in the vibration of atoms. The DWF plays an essential role in determining crystal structures as well as thermal
quantities in EXAFS spectra. Many studies have derived methods for calculating and analyzing dependence on
temperature of o (Tranquada and Ingalls 1983, Stern et al 1991, Frenkel and Rehr 1993, Duc et al 2018), u? (Beni
and Platzman 1976, Schowalter et al 2009), and the correlation effects between them for cubic crystals (Nguyen
etal 2020). However, to date have not been studies the temperature dependence under pressure effects of 0%, u*
and atomic correlation displacement functions for intermetallic alloys.

In the present work, how the correlation displacement function depends on temperature and pressure is
analyzed and described by the function Cr(7, P) based on the DWF in EXAFS. Analytical expressions are
determined for o*(T, P) based on the anharmonic correlated Debye model (ACDM) and for 1*(T, P) based on
the anharmonic Debye model (ADM), and the ratio relationships among o*(T, P), u*(T, P), and Cg(T, P) are
considered. The effects of multi-particle systems are accounted for in the present one-dimensional model by
means of a simple measure based on the derived anharmonic effective potentials, including the interactions of
absorber and backscatter atoms with their nearest neighbours. Single-pair interactions of atoms are described by
the Morse potential. This study analyzes the difference between o” obtained from the ACDM and u” from the
ADM, applies the analytical expressions to face-centered cubic (fcc) crystals and intermetallic alloys, and
presents numerical results for copper (Cu-Cu), silver (Ag-Ag) crystals and copper—silver alloys Cu,Ag; . Here,
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Cuy,Ag,s is the alloy with 72% of Ag and 28% of Cu, and CusyAgsy is the alloy with 50% of Cuand 50% of Ag (or
1:1 ratio). Some authors have studied these materials previously (Nguyen and Vu 2019, Ba 2020), and the results
obtained using the present theory agree well with experimental values (Greegor and Lytle 1979, Kraut and

Stern 2000, Okube and Yoshiasa 2001, Pirog et al 2002) and other study (Beni and Platzman 1976, Baand

Tho 2017).

This study chooses Cu,Ag; « (x = 72, 50) inter-metallic alloys because (1) Cu;,Agys (£1%) and is also
known as CuSil or UNS P0772 (note: CuSil should not be confused with Cusil-ABA, which has the composition
63.0% Ag, 35.25% Cu, and 1.75% Ti). CuSil is a eutectic alloy usually used in engineering, and the material is
mainly used to weld metal in a vacuum environment (Nafi et al 2013). (2) For CusyAgso, an alloy discovered by
Kraut and Stern that does not exist at the 1:1 ratio experimentally in 2000, so far there has been no theory to
explain and confirm, especially the non-existent alloy over the entire temperature range or at only a given
temperature range. Therefore, these issues need to be considered and studied.

2. Formalism

In the anharmonic approximation, EXAFS spectra are usually expressed as (Frenkel and Rehr 1993)
502]\]] 2,2 R/ o2
X(k) =) —5F(rk)e % e? i/ sin [26R; + 6 (k)] (1)
i KR
where SOZ, Nj, F(k), 6(k), R j, 5, and A are defined elsewhere (Crozier et al 1988, Frenkel and Rehr 1993). In
equation (1), the exponential function 20? #? is the Debye—Waller factor (DWF), and the coefficient o2 is the

i
MSRD of the bond between two nearest-neighbor atoms (Hung and Rehr 1997). During neutron diffraction or

x-ray absorption, the DWF has the similar form of (1/2) /<;2uj2.
In the atoms’ vibration, convention r is the distance between two atoms at temperature T'and is represented
by the difference

50
ri =RV — ), (2)

50, . ) e . . : .
Here, 2R ; is the unit vector for atom j at equilibrium, v;is the displacement vector of atom j, and vy is the
displacement vector of the absorber atom located at the coordinate origin.

In equation (1), the MSRD o is defined while taking the exponential average (exp(2irr;)) (Crozier et al 1988)

(expQirr)) — (exp 2R (v — w)]) = exp (—2r2 (R — vo)P)). 3)

For the harmonic-approximation oscillation, the expression for the MSRD o dependence on temperature
and under pressure effects has the form

oi(T, P) = ([R;(v — w)P) = ((:R)?) + (mFR)?) — 2(eR)¥.R). )
With vy = v;, the MSD uX(T, P)is expressed as
(T, P) = (n0.R)?) = (:R)?), )

and the correlation function Cg(T, P) is expressed as
Cr(T, P) = 2{(n.R) (v.R))). (6)
From equations (4)—(6), the MSRD, MSD, and correlation function are related by
Cr(T, P) = 2u}(T, P) — o5(T, P). (7)

To determine the functions o*(T, P), u*(T, P), and Cg(T, P) with anharmonic effects, we must determine the
effective spring force constants (SFCs) of atomic pairs in a cluster of nearest-neighbours atoms, and this is done
based on the effective anharmonic potential as a function of the displacement x under pressure effects. According
to the ACDM (indexed as A) and ADM (indexed as D), the anharmonic potential has the following form (Okube
and Yoshiasa 2001, Hung et al 2014):

U%/D(X) ~ %keAﬂ/sz + k;zj/fDxS’ (8)

where k e%/ D'is the effective SFC, k3%(D is the cubic parameters (CP) that causes the asymmetry of the interaction
potential due to anharmonicity, x = r — ryis the lattice thermal expansion, and r is the distance between two
atoms at temperature T and pressure P, and ry is the corresponding value at equilibrium and pressure 0GPa. The
difference between the SFCs and CPs leads to the difference between the potentials Ue‘% (x)and [Je%c (x)in
equation (8).
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The SFCs and CPs can be obtained when the effective potentials are determined under temperature and
pressure effects with different magnitudes. We write M, for the mass of the absorbing atom and M, for that of
the scattering atom, and mass of two atoms can be considered as of an atom with mass ;1 = M;My/(M; + M,)
and located at the midpoint of the distance two atoms, p is the reduced mass.

In the ACDM, the potential Ue?f (x, P) hasthe form

Ugp(x, P) = Ux, P) + 5 U(ﬁxm%zﬂ%), ©)
j=i 1

where U(x, P) is the interaction potential between the absorber and backscatter atoms. The sum of i over
absorber (i = 1) and backscatter (i = 2) atoms and the sum of j over their nearest neighbours in a cluster of
atoms describe the lattice contributions to pair interactions and depend on the crystal structure type. In

equation (9), R is the unit vector. For fcc crystals, the potential Ue?f (x, P)iswritten as
Up(x, P) = Ux, P) + ZU(—g, P) + SU(—E, P) + SUG, P). (10)

Similarly, according to the ADM, the potential Uff} (x, P)isthe expression of the single-particle effective
potential, and when only the influence of the N nearest-neighbour atoms is taken into account, the potential
Ue%[ (x, P)is

N
UZ ) = > UPR'H). (11)
j=1

For fcc crystals, we have
UZ(x, P) = Ux, P) + U(—x, P) + 4U(§, P) + 4U(—§, P). (12)

Using the effective potentials in equations (10)—(12) changes the complex three-dimensional problem for
multi-particle effects into a more straightforward one-dimensional problem.
Expanding the Morse potential U(x, P) to third order around a minimum point gives

U(x, P) = Y(e 2P — 2¢=P) Y (=1 4 ¢2x2P? — ¢*3P3 + ..), (13)

where Yis the dissociation energy and 1 /¢ corresponds to the width of the potential. It is usually sufficient to
consider weak anharmonicity (i.e., first-order perturbation theory) so that only the cubic term in equation (13)
must be kept. For two-component intermetallic alloys, if the two-component symbols of the alloy have the
indexes 1 and 2, then we have ¢,, and Y;,, and their values are calculated as a percentage doping of alloy (Duc
and Tho 2019, Nguyen 2020).

According to the Debye model, the SFCs are expressed as

kP = a¥ool, ki = —bYiad), (14)

For the ACDM, the factorsarea = 5and b = 3/4, and for the ADM theyarea = 8andb = —1.

Having derived the thermodynamic quantities in equations (5)—(7), we describe the system in the Debye
model with all the different frequencies, each corresponding to a wave of frequency w(q), where the wavenumber
g varies in the first Brillouin region. Based on the ACDM, the expression for o*(T,P) has the form

he /e 1+ za(q)

o(T, P) = wa(Q) —————=dq, . (15)

27Tke%c »/(; 4l 1 — z4(q) 1

2kA 1
= ¢~ Bhwig), —2 eff | o 21, _ . 16
za(q) = e wa(q) = 2 v; | sin(qc/2)] B T (16)
Upon substituting kej} from equation (14) into equations (15) and (16), o*(T) has the form

he /e 1+ za(q)
o(T,P) = ———— w, ———dg, 17
TP = e S, @2 e (17)

—(Bheoa(@) 10Yi,97,
z(q) =e D) walg) =2 T|Sln(qc/2)|, lq] < 7/c. (18)

Similarly, for the ADM, 4*(T) is determined as

fic /e 1+ zp(q)
X(T, P) = — " dg, 19
u( ) 27Tke%c fo wD(q)l — zp(q) 1 4
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Table 1. Parameters Y,, and ¢ ;, for Morse potential at pressure P = 0GPa.

Y, 12
Quantity/ Yy;[eV] [eV] ¢ [A71] A7
Crystal (Present) (Expt.) (Present) (Expt.)
Cu-Cu 0.3429 0.3528 1.3588 1.4072
Ag-Ag 0.3323 0.3253 1.3690 1.3535
CuyrAgs 0.3381 — 1.3634 —
CuspAgso 0.3376 — 1.3638 —
Table 2. Effective spring force constants and cubic parameters.
ke ke k5 kg ks ki ki ki
Quantity/ [eVA 2] [eVA 3 [eVA 2] [eVA Y [eVA] [eVA [eVA?] [eVA ]
Crystal (Present) (exp.) (Present) (Exp.) (Present) (Exp.) (Present) (Exp.)
Cu-Cu 3.1655 3.4931 5.5889 5.7520 0.6646 0.8070 3.0889 2.9831
Ag-Ag 3.1139 2.9797 5.8547 5.9032 1.0753 1.2289 3.4674 3.0563
Cu;,Agss 3.1423 — 5.0278 — 0.6814 — 2.6874 —
CuspAgs 3.1396 — 5.0234 — 0.6423 — 0.8569 —

Table 3. Morse potential parameters, spring force constants and cubic parameters under pressure effects for
CuspAgso-

Pressure[ GPa] Y12 (eV) o, A ke?f (eVA?) k;f)f (eVA?) k;sz (eVAY) k3[2)ff (eVA)

0.3376 1.3588 3.1396 5.0234 0.6423 0.8569
5 0.3154 1.3485 2.9032 4.8756 0.6415 0.8426
10 0.2977 1.3168 2.7428 4.6843 0.5902 0.8215
14 0.2184 1.2854 2.3595 4.4782 0.5527 0.7927
, 2k
zp(q) = e~ Chen@), wp(g) =2 Sva | sin(qc/2)], (20)
Substituting ke[f} from equation (14) into equations (19) and (20) gives
fic /e 1 + zp(q)
(T, P) = — [ w2 L, @1)
1671267, Yo 1 — zp(q)
. 8Yi, 7
zp(q) = e Phen@) wp(q) = 2,/%"5‘2 |'sin (qc/2)1, lql < /¢, (22)

where cis the lattice constant, q is the phonon wavenumber, and M is the mass of composite atoms. From
equations (7), (17), (18), (21), and (22), we have the correlation function Cg(T,P) as

fic /e 1 + zp(q) hic m/e 1 + za(q)
Cr(T, P) = —— wp(q) dq — wy (q) —————=dgq. (23)
! 811207, Jy s (@ 10mY67, Jy oS 24(q)

3. Numerical results and discussion

We use equations (17), (21), (23) to perform calculations for Cu-Cu, Ag-Ag and Cu,Ag; .. The results of the
theoretical calculations of the parameters of the Morse potential at pressure 0GPa and the experimental Morse
parameters (Okube and Yoshiasa 2001) are listed in table 1, and the SFCs are listed in table 2. The data in tables 1
and 2 show that the theoretical calculations agree with the experimental measurements and other studies
(Greegor and Lytle 1979, Tranquada and Ingalls 1983, Yokoyama et al 1989, Okube and Yoshiasa 2001, Pirog
etal2002). Table 3 listed results of theoretical calculations for Morse potential parameters, spring force
constants and cubic parameters with effects of pressure up to 14GPa for CusyAgs, alloy. Substituting the
parameters in tables 1-3 into equations (17), (21), and (23) gives o”(T; P), u*(T, P), and Cg(T; P) for Cu-Cu, Ag—
Agand Cu,Ag,.

There is a significant difference between the correlation oscillation model and the single-particle
anharmonic oscillation model, and this difference is due to the determination of the number and mass of atoms

4
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Figure 1. Dependence on temperature and pressure of (T, P) for Cu, Ag, Cu,Ag; _ (x = 72,50 ) at 0GPa (a); For Cu,Ag; _, (x = 50)

up to 14GPa (b).
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Figure 2. Dependence on temperature and pressure of u’(T, P) for Cu, Ag, Cu,Ag,_, (x = 72,50) at 0GPa (a); For CuspAgs up to
14GPa (b).

oscillating in the two models. For the correlation oscillation model, the particles’ quantity and mass are only half
of those of the single-particle anharmonic oscillator, and a crystal acts as quasi-atoms. That means that the mass
is reduced to only half of the composite atomic mass, and the number of atoms is only half that for a single-
particle anharmonic vibration model.

Figures | and 2 show the temperature dependences of o* and 1%, respectively, for Cu-Cu, Ag-Ag, and
Cu,Ag; . (x = 72,50) at pressure 0GPa (figures 1(a), 2(a)), and pressure up to 14GPa (figures 1(b), 2(b)) for
CuAg;  (x = 50); o(T, P) and t/*(T, P) are both linearly proportional to the temperature T at high
temperatures, and o”(T, P) is greater than 1*(T, P) at any given temperature, and this is seen more clearly in
figures 1(a), 2(a), the experimental values of *(T, P) for Cu-Cu (marked by the symbol * in figure 1(a)) are
higher than those for u*(T, P) (Greegor and Lytle 1979).

Figure 3 shows how C(T, P) depends on temperature for Cu-Cu, Ag-Ag and Cu,Ag, under pressure effects.
Similar to figures 1 and 2, each correlation function is linearly proportional to T at high temperatures, and the
classical limit is applicable. At low temperatures, the curves for Cu-Cu, Ag-Ag and Cu;,Ag,s contain zero-point
energy contributions, which is a quantum effect. The calculated results for (T, P), u*(T, P),and Cx(T, P) for
Cu-Cu, Ag-Ag fit well with the experimental values (Greegor and Lytle 1979, Yokoyama et al 1989, Okube and
Yoshiasa 2001), and those for Cu;,,Ag,s agree well with other theories (Ba 2020). Thus, it is possible to deduce
that the calculation results of the present method for Cu,Ag; _ are reasonable. Moreover, o(T) is greater than
*(T), showing that the damping coefficients in EXAFS of the correlation oscillation model are larger than those
of single-particle anharmonic oscillation models.

Figure 4 shows the temperature dependence under pressure effects of the correlation ratio
o(T)/Cr(T)u?(T), which decreases rapidly at low temperatures and is unchanged at high temperatures,
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reflecting the correlation effect between these quantities in the classical theories and fitting the curve line
inferred from the empirical data (blue and red dashed lines; Pirog et al 2002).
Note that the curves in figures 1-4 for the intermetallic alloys Cu;,Ag,s and CusoAgs, have attractive
characteristics. For Cu;,Ag,s, its curves are similar in shape to those for pure Cu-Cu, Ag-Ag meaning that
Cuy,Agyg still has an fec structure. However, for CusgAgs, (the magenta lines in figures 1(a)—4(a)), the curves are
abnormally shaped, contain no zero-point energy, and do not follow those of Cu-Cu, Ag-Ag and Cu;,Ag,s at
low temperatures (in the range of 140-200 K), seen more clearly in figures 4(a), (c). At temperatures higher than
200K, the curves return gradually to those for Cu-Cu, Ag-Agand Cu;,Agys.
Figures 1(b)-3(b) shows the temperature dependence of the 0%, u*, and the Cg, respectively, for CusoAgs,
alloy under pressures effects from 0GPa to 14GPa. As the pressure increases, the curve lines tend to gradually
shift according to the curves of Cu-Cu, Ag-Ag crystals and Cu;,Ag,g alloy. When pressure up to 14GPa, curve
lines of CuspAgs alloy are similar to those of Cu-Cu, Ag-Ag and Cu;,Ag,s, that mean they are linearly
proportional to T at high temperatures and contain zero-point energy contributions at low temperatures, in
figure 4 shows that the crease segment in figures 4(a), 4(c) has straightened identical to the other curves at

pressure 14GPa (figure 4(b)).

We speculate that for CusgAgso with a 1:1 ratio, the atoms are no longer closely linked to each other asin an
fcc lattice at low temperatures and pressure, meaning that the alloy CusoAgs, is impossible in practice in the
range temperatures of 140-200 K and pressure is lower than 14GPa due to the atoms’ correlation displacement
changes suddenly and causes structural disruption. With increasing temperature, the atoms’ correlation
displacement changes until the temperature reaches a certain value (over 200 K) (or pressure increased up to
14GPa), then the fcc lattice order slowly recovers, and the curves for CusoAgs, return to those for Cu-Cu, Ag-Ag

6
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and Cu;,Agys. This explanation accords entirely reasonably with studies done in other models and theories, and
agree well with experimentations for Cu-Agalloy at 1:1 ratio (Nguyen and Vu 2019, Kraut and Stern 2000).

4, Conclusions

In the present work, the correlation displacement functions, the MSRD, and the MSD in EXAFS spectra and
their ratios were deduced and analyzed. The theory was applied to Cu-Cu, Ag-Ag crystals and Cu,Ag, ,alloys,
and analytical expressions for Cgr(T, P), (T, P), and (T, P) were inferred based on Debye models. The
advantage of these models is based on using anharmonic effective potentials, which account for the
contributions of all the nearest-neighbor atoms. The differences in the effective SFCs and the numbers and
masses of vibrating atoms in these models cause differences in the crystal thermodynamic properties.

Athigh temperatures and at any pressure, (T, P), u?(T, P), and Cg(T, P) are all linearly proportional to the
temperature T, and the classical limit is applicable. At low temperatures, o?(T, P), u?(T, P), and Cx(T, P) of Cu-
Cu, Ag-Agand Cu;,Ag,s crystals (at any pressure), and for CusyAgs, alloy (at the pressure 14GPa) contain zero-
point energy contributions, which is a quantum effect. The correlation ratio (T, P)/Cg(T, P)u’(T, P) is
constant at high temperatures, reflecting correctly the correlation among these quantities in EXAFS classical
theories and agrees well with the curve inferred from empirical data.

The crystal lattice of CusgAgs alloy exhibited abnormal disorder at temperatures of the range 140-180 K and
the pressure is less than 14GPa. We speculate that this is because the Cu and Ag atoms are no longer linked
closely as in an fcc structure, meaning that Cu-Agalloy with a 1:1 ratio is impossible at temperatures around
140-200 K and the pressure is less than 14GPa. The cause may be that the atoms’ correlation displacement
changes suddenly and causes structural disruption. This result was discovered by Kraut and Stern (2000) as well
as in other theoretical studies by Nguyen and Vu (2019) and Ba (2020). These anomalies may give rise to many
new interesting in-depth studies for researchers specializing in materials science.

The good agreement between the calculation results of the present study and the values obtained from
experiments and calculations according to other models shows the effectiveness of the present theory for
analyzing EXAFS spectral data.
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