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Abstract
Reported here are expressions temperature dependence under pressure effects for themean square
displacement, themean square relative displacement, the correlation displacement function of atoms,
and the ratio of the relationship between the quantities due to anharmonicity under pressure effects in
extended x-ray absorption fine structure spectra. The expressions are determined using the
anharmonic correlatedDebyemodel and the anharmonicDebyemodel. Complicated calculations
due to themany-particle effects and anharmonic properties are replaced by a calculation based on the
effective anharmonic potential, including the interaction of absorbing and scattering atomswith their
nearest-neighbour atoms. Based on theDebye–Waller factor, the difference between themean square
relative displacement andmean square displacement is analyzed, and their ratios are calculated. This
work is applied to face-centered cubic crystals and their alloys. Numerical results for copper (Cu-Cu),
silver (Ag-Ag) crystals and copper–silver alloys CuxAg1−x agreewith experimental values and other
studies.

1. Introduction

Thermal vibrations and disorder in Extended x-ray Absorption Fine Structure (EXAFS) give rise to theDebye-
Waller factor (DWF). TheDWF is considered to correlated averages over theMean Square Relative
Displacement (MSRD)σ2 for a pair of absorber and backscatter atoms, in comparison, neutron diffraction refers
to theMean SquareDisplacement (MSD) u2 of a given atom. The functionsσ2 and u2 are closely related, from
them, the displacement–displacement correlation functionCR can be deduced to describe the correlation effects
in the vibration of atoms. TheDWFplays an essential role in determining crystal structures aswell as thermal
quantities in EXAFS spectra.Many studies have derivedmethods for calculating and analyzing dependence on
temperature ofσ2 (Tranquada and Ingalls 1983, Stern et al 1991, Frenkel andRehr 1993,Duc et al 2018), u2 (Beni
and Platzman 1976, Schowalter et al 2009), and the correlation effects between them for cubic crystals (Nguyen
et al 2020). However, to date have not been studies the temperature dependence under pressure effects ofσ2, u2

and atomic correlation displacement functions for intermetallic alloys.
In the present work, how the correlation displacement function depends on temperature and pressure is

analyzed and described by the functionCR(T, P) based on theDWF in EXAFS. Analytical expressions are
determined forσ2(T, P) based on the anharmonic correlatedDebyemodel (ACDM) and for u2(T, P) based on
the anharmonicDebyemodel (ADM), and the ratio relationships amongσ2(T, P), u2(T, P), andCR(T, P) are
considered. The effects ofmulti-particle systems are accounted for in the present one-dimensionalmodel by
means of a simplemeasure based on the derived anharmonic effective potentials, including the interactions of
absorber and backscatter atomswith their nearest neighbours. Single-pair interactions of atoms are described by
theMorse potential. This study analyzes the difference betweenσ2 obtained from theACDMand u2 from the
ADM, applies the analytical expressions to face-centered cubic (fcc) crystals and intermetallic alloys, and
presents numerical results for copper (Cu-Cu), silver (Ag-Ag) crystals and copper–silver alloys CuxAg1−x. Here,
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Cu72Ag28 is the alloywith 72%ofAg and 28%ofCu, andCu50Ag50 is the alloywith 50%ofCu and 50%ofAg (or
1:1 ratio). Some authors have studied thesematerials previously (Nguyen andVu 2019, Ba 2020), and the results
obtained using the present theory agree well with experimental values (Greegor and Lytle 1979, Kraut and
Stern 2000,Okube andYoshiasa 2001, Pirög et al 2002) and other study (Beni and Platzman 1976, Ba and
Tho 2017).

This study chooses CuxAg1−x (x=72, 50) inter-metallic alloys because (1)Cu72Ag28 (±1%) and is also
known asCuSil orUNSP0772 (note: CuSil should not be confusedwithCusil-ABA, which has the composition
63.0%Ag, 35.25%Cu, and 1.75%Ti). CuSil is a eutectic alloy usually used in engineering, and thematerial is
mainly used toweldmetal in a vacuumenvironment (Nafi et al 2013). (2) ForCu50Ag50, an alloy discovered by
Kraut and Stern that does not exist at the 1:1 ratio experimentally in 2000, so far there has been no theory to
explain and confirm, especially the non-existent alloy over the entire temperature range or at only a given
temperature range. Therefore, these issues need to be considered and studied.

2. Formalism

In the anharmonic approximation, EXAFS spectra are usually expressed as (Frenkel andRehr 1993)
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where S ,0
2 Nj, F(k), δ(k),R j,κ, andλ are defined elsewhere (Crozier et al 1988, Frenkel andRehr 1993). In

equation (1), the exponential function s k2 j
2 2 is theDebye–Waller factor (DWF), and the coefficient s j

2 is the
MSRDof the bond between two nearest-neighbor atoms (Hung andRehr 1997). During neutron diffraction or
x-ray absorption, theDWFhas the similar formof k/ u1 2 .j

2 2( )
In the atoms’ vibration, convention r is the distance between two atoms at temperatureT and is represented

by the difference

= -R v vr , 2j j j 0
0ˆ ( ) ( )

Here,R j
0ˆ is the unit vector for atom j at equilibrium, vj is the displacement vector of atom j, and v0 is the

displacement vector of the absorber atom located at the coordinate origin.
In equation (1), theMSRDσ2 is definedwhile taking the exponential average 〈exp(2iκrj)〉 (Crozier et al 1988)

k k ká ñ  á - ñ = - á - ñR Rv v v vi r iexp 2 exp 2 exp 2 . 3j j j 0 j j 0
0 2 0 2( ) [ ˆ ( )] ( [ ˆ ( )] ) ( )

For the harmonic-approximation oscillation, the expression for theMSRDσ2 dependence on temperature
and under pressure effects has the form
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With =v v ,0 j theMSD u2(T, P) is expressed as

= á ñ = á ñR Rv vu T P, . . , 5j 0 j j j
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and the correlation functionCR(T, P) is expressed as

= á ñR Rv vC T P, 2 . . . 6R 0 j i j( ) ( ˆ )( ˆ ) ( )

From equations (4)–(6), theMSRD,MSD, and correlation function are related by

s= -C T P u T P T P, 2 , , . 7R j j
2 2( ) ( ) ( ) ( )

Todetermine the functionsσ2(T, P), u2(T, P), andCR(T, P)with anharmonic effects, wemust determine the
effective spring force constants (SFCs) of atomic pairs in a cluster of nearest-neighbours atoms, and this is done
based on the effective anharmonic potential as a function of the displacement xunder pressure effects. According
to theACDM (indexed as A) andADM (indexed asD), the anharmonic potential has the following form (Okube
andYoshiasa 2001,Hung et al 2014):
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where /keff
A D is the effective SFC, /k eff

A D
3 is the cubic parameters (CP) that causes the asymmetry of the interaction

potential due to anharmonicity, x=r−r0 is the lattice thermal expansion, and r is the distance between two
atoms at temperatureT and pressure P, and r0 is the corresponding value at equilibrium and pressure 0GPa. The
difference between the SFCs andCPs leads to the difference between the potentialsU xeff

A ( ) andU xeff
D ( ) in

equation (8).
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The SFCs andCPs can be obtainedwhen the effective potentials are determined under temperature and
pressure effects with differentmagnitudes.WewriteM1 for themass of the absorbing atomandM2 for that of
the scattering atom, andmass of two atoms can be considered as of an atomwithmassμ=M1M2/(M1+M2)
and located at themidpoint of the distance two atoms,μ is the reducedmass.

In the ACDM, the potentialU x P,eff
A ( ) has the form
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whereU(x, P) is the interaction potential between the absorber and backscatter atoms. The sumof i over
absorber (i=1) and backscatter (i=2) atoms and the sumof j over their nearest neighbours in a cluster of
atoms describe the lattice contributions to pair interactions and depend on the crystal structure type. In
equation (9), R̂ is the unit vector. For fcc crystals, the potentialU x P,eff

A ( ) is written as
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Similarly, according to the ADM, the potentialU x P,eff
D ( ) is the expression of the single-particle effective

potential, andwhen only the influence of theN nearest-neighbour atoms is taken into account, the potential
U x P,eff

D ( ) is
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For fcc crystals, we have
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Using the effective potentials in equations (10)–(12) changes the complex three-dimensional problem for
multi-particle effects into amore straightforward one-dimensional problem.

Expanding theMorse potentialU(x, P) to third order around aminimumpoint gives

f f= - » - + - +f f- -U x P Y e e Y x P x P, 2 1 ... , 13xP xP2 2 2 2 3 3 3( ) ( ) ( ) ( )

whereY is the dissociation energy and f/1 corresponds to thewidth of the potential. It is usually sufficient to
consider weak anharmonicity (i.e.,first-order perturbation theory) so that only the cubic term in equation (13)
must be kept. For two-component intermetallic alloys, if the two-component symbols of the alloy have the
indexes 1 and 2, thenwe have f12 andY12, and their values are calculated as a percentage doping of alloy (Duc
andTho 2019,Nguyen 2020).

According to theDebyemodel, the SFCs are expressed as

f f= = -/ /k aY k bY, . 14eff
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12 12
2
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For the ACDM, the factors are a=5 and b=3/4, and for the ADM they are a=8 and b=−1.
Having derived the thermodynamic quantities in equations (5)–(7), we describe the system in theDebye

model with all the different frequencies, each corresponding to awave of frequencyω(q), where thewavenumber
q varies in the first Brillouin region. Based on the ACDM, the expression forσ2(T,P)has the form
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Upon substituting keff
A from equation (14) into equations (15) and (16),σ2(T) has the form
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Similarly, for the ADM, u2(T) is determined as
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Substituting keff
D from equation (14) into equations (19) and (20) gives
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where c is the lattice constant, q is the phononwavenumber, andM is themass of composite atoms. From
equations (7), (17), (18), (21), and (22), we have the correlation functionCR(T,P) as
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3.Numerical results and discussion

Weuse equations (17), (21), (23) to perform calculations for Cu-Cu, Ag-Ag andCuxAg1−x. The results of the
theoretical calculations of the parameters of theMorse potential at pressure 0GPa and the experimentalMorse
parameters (Okube andYoshiasa 2001) are listed in table 1, and the SFCs are listed in table 2. The data in tables 1
and 2 show that the theoretical calculations agree with the experimentalmeasurements and other studies
(Greegor and Lytle 1979, Tranquada and Ingalls 1983, Yokoyama et al 1989,Okube andYoshiasa 2001, Pirög
et al 2002). Table 3 listed results of theoretical calculations forMorse potential parameters, spring force
constants and cubic parameters with effects of pressure up to 14GPa for Cu50Ag50 alloy. Substituting the
parameters in tables 1–3 into equations (17), (21), and (23) givesσ2(T, P), u2(T, P), andCR(T, P) for Cu–Cu, Ag–
Ag andCuxAgy.

There is a significant difference between the correlation oscillationmodel and the single-particle
anharmonic oscillationmodel, and this difference is due to the determination of the number andmass of atoms

Table 1.ParametersY12 andf 12 forMorse potential at pressure P=0GPa.

Quantity/

Crystal

Y12 [eV]
(Present)

Y12
[eV]

(Expt.)
f12 [Å

−1]
(Present)

f12

[Å−1]
(Expt.)

Cu-Cu 0.3429 0.3528 1.3588 1.4072

Ag-Ag 0.3323 0.3253 1.3690 1.3535

Cu72Ag28 0.3381 — 1.3634 —

Cu50Ag50 0.3376 — 1.3638 —

Table 2.Effective spring force constants and cubic parameters.

keff
A keff

A keff
D keff

D k eff
A

3 k3eff
A k eff

D
3 k eff

D
3

Quantity/

Crystal

[eVÅ−2]
(Present)

[eVÅ−2]
(exp.)

[eVÅ−2]
(Present)

[eVÅ−2]
(Exp.)

[eVÅ−3]
(Present)

[eVÅ−3]
(Exp.)

[eVÅ−3]
(Present)

[eVÅ−3]
(Exp.)

Cu-Cu 3.1655 3.4931 5.5889 5.7520 0.6646 0.8070 3.0889 2.9831

Ag-Ag 3.1139 2.9797 5.8547 5.9032 1.0753 1.2289 3.4674 3.0563

Cu72Ag28 3.1423 — 5.0278 — 0.6814 — 2.6874 —

Cu50Ag50 3.1396 — 5.0234 — 0.6423 — 0.8569 —

Table 3.Morse potential parameters, spring force constants and cubic parameters under pressure effects for
Cu50Ag50.

Pressure[GPa] Y12 (eV) ф12
(Å−1) k eVAeff

A 2( ) k eVAeff
D 2( ) k eVAeff

A
3

3( ) k eVAeff
D

3
3( )

0 0.3376 1.3588 3.1396 5.0234 0.6423 0.8569

5 0.3154 1.3485 2.9032 4.8756 0.6415 0.8426

10 0.2977 1.3168 2.7428 4.6843 0.5902 0.8215

14 0.2184 1.2854 2.3595 4.4782 0.5527 0.7927
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oscillating in the twomodels. For the correlation oscillationmodel, the particles’ quantity andmass are only half
of those of the single-particle anharmonic oscillator, and a crystal acts as quasi-atoms. Thatmeans that themass
is reduced to only half of the composite atomicmass, and the number of atoms is only half that for a single-
particle anharmonic vibrationmodel.

Figures 1 and 2 show the temperature dependences ofσ2 and u2, respectively, for Cu-Cu, Ag-Ag, and
CuxAg1−x (x=72, 50) at pressure 0GPa (figures 1(a), 2(a)), and pressure up to 14GPa (figures 1(b), 2(b)) for
CuxAg1−x (x=50);σ2(T, P) and u2(T, P) are both linearly proportional to the temperatureT at high
temperatures, andσ2(T, P) is greater than u2(T, P) at any given temperature, and this is seenmore clearly in
figures 1(a), 2(a), the experimental values ofσ2(T, P) for Cu-Cu (marked by the symbol * infigure 1(a)) are
higher than those for u2(T, P) (Greegor and Lytle 1979).

Figure 3 shows howCR(T, P) depends on temperature for Cu-Cu, Ag-Ag andCuxAgy under pressure effects.
Similar tofigures 1 and 2, each correlation function is linearly proportional toT at high temperatures, and the
classical limit is applicable. At low temperatures, the curves for Cu-Cu, Ag-Ag andCu72Ag28 contain zero-point
energy contributions, which is a quantum effect. The calculated results forσ2(T, P), u2(T, P), andCR(T, P) for
Cu-Cu, Ag-Ag fit well with the experimental values (Greegor and Lytle 1979, Yokoyama et al 1989,Okube and
Yoshiasa 2001), and those for Cu72Ag28 agree well with other theories (Ba 2020). Thus, it is possible to deduce
that the calculation results of the presentmethod for CuxAg1−x are reasonable.Moreover,σ2(T) is greater than
u2(T), showing that the damping coefficients in EXAFS of the correlation oscillationmodel are larger than those
of single-particle anharmonic oscillationmodels.

Figure 4 shows the temperature dependence under pressure effects of the correlation ratio
σ2(T)/CR(T)u

2(T), which decreases rapidly at low temperatures and is unchanged at high temperatures,

Figure 1.Dependence on temperature and pressure ofσ2(T, P) for Cu, Ag, CuxAg1−x (x=72, 50 ) at 0GPa (a); For CuxAg1−x (x=50)
up to 14GPa (b).

Figure 2.Dependence on temperature and pressure of u2(T, P) for Cu, Ag, CuxAg1−x (x=72, 50) at 0GPa (a); For Cu50Ag50 up to
14GPa (b).
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reflecting the correlation effect between these quantities in the classical theories and fitting the curve line
inferred from the empirical data (blue and red dashed lines; Pirög et al 2002).

Note that the curves infigures 1–4 for the intermetallic alloys Cu72Ag28 andCu50Ag50 have attractive
characteristics. ForCu72Ag28, its curves are similar in shape to those for pure Cu-Cu, Ag-Agmeaning that
Cu72Ag28 still has an fcc structure. However, for Cu50Ag50 (themagenta lines infigures 1(a)–4(a)), the curves are
abnormally shaped, contain no zero-point energy, and do not follow those of Cu-Cu, Ag-Ag andCu72Ag28 at
low temperatures (in the range of 140–200K), seenmore clearly infigures 4(a), (c). At temperatures higher than
200K, the curves return gradually to those for Cu-Cu, Ag-Ag andCu72Ag28.

Figures 1(b)–3(b) shows the temperature dependence of theσ2, u2, and theCR, respectively, for Cu50Ag50
alloy under pressures effects from0GPa to 14GPa. As the pressure increases, the curve lines tend to gradually
shift according to the curves of Cu-Cu, Ag-Ag crystals andCu72Ag28 alloy.When pressure up to 14GPa, curve
lines of Cu50Ag50 alloy are similar to those of Cu-Cu, Ag-Ag andCu72Ag28, thatmean they are linearly
proportional to T at high temperatures and contain zero-point energy contributions at low temperatures, in
figure 4 shows that the crease segment infigures 4(a), 4(c) has straightened identical to the other curves at
pressure 14GPa (figure 4(b)).

We speculate that for Cu50Ag50with a 1:1 ratio, the atoms are no longer closely linked to each other as in an
fcc lattice at low temperatures and pressure,meaning that the alloy Cu50Ag50 is impossible in practice in the
range temperatures of 140–200K and pressure is lower than 14GPa due to the atoms’ correlation displacement
changes suddenly and causes structural disruption.With increasing temperature, the atoms’ correlation
displacement changes until the temperature reaches a certain value (over 200K) (or pressure increased up to
14GPa), then the fcc lattice order slowly recovers, and the curves for Cu50Ag50 return to those for Cu-Cu, Ag-Ag

Figure 3.Dependence on temperature and pressure of CR(T, P) for Cu, Ag, CuxAg1−x (x=72, 50) at 0GPa (a); For Cu50Ag50 up to
14GPa (b).

Figure 4.Correlation ratios ofσ2/u2CR at 0GPa (a), and 14GPa (b).
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andCu72Ag28. This explanation accords entirely reasonably with studies done in othermodels and theories, and
agreewell with experimentations for Cu-Ag alloy at 1:1 ratio (Nguyen andVu 2019, Kraut and Stern 2000).

4. Conclusions

In the present work, the correlation displacement functions, theMSRD, and theMSD in EXAFS spectra and
their ratios were deduced and analyzed. The theorywas applied toCu-Cu, Ag-Ag crystals andCuxAg1−x alloys,
and analytical expressions forCR(T, P),σ

2(T, P), and u2(T, P)were inferred based onDebyemodels. The
advantage of thesemodels is based on using anharmonic effective potentials, which account for the
contributions of all the nearest-neighbor atoms. The differences in the effective SFCs and the numbers and
masses of vibrating atoms in thesemodels cause differences in the crystal thermodynamic properties.

At high temperatures and at any pressure,σ 2(T, P), u 2(T, P), andCR(T, P) are all linearly proportional to the
temperatureT, and the classical limit is applicable. At low temperatures,σ 2(T, P), u 2(T, P), andCR(T, P) of Cu-
Cu, Ag-Ag andCu72Ag28 crystals (at any pressure), and for Cu50Ag50 alloy (at the pressure 14GPa) contain zero-
point energy contributions, which is a quantum effect. The correlation ratioσ 2(T, P)/CR(T, P)u

2(T, P) is
constant at high temperatures, reflecting correctly the correlation among these quantities in EXAFS classical
theories and agrees well with the curve inferred from empirical data.

The crystal lattice of Cu50Ag50 alloy exhibited abnormal disorder at temperatures of the range 140–180K and
the pressure is less than 14GPa.We speculate that this is because theCu andAg atoms are no longer linked
closely as in an fcc structure,meaning that Cu-Ag alloywith a 1:1 ratio is impossible at temperatures around
140–200K and the pressure is less than 14GPa. The causemay be that the atoms’ correlation displacement
changes suddenly and causes structural disruption. This result was discovered byKraut and Stern (2000) aswell
as in other theoretical studies byNguyen andVu (2019) andBa (2020). These anomaliesmay give rise tomany
new interesting in-depth studies for researchers specializing inmaterials science.

The good agreement between the calculation results of the present study and the values obtained from
experiments and calculations according to othermodels shows the effectiveness of the present theory for
analyzing EXAFS spectral data.
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