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A B S T R A C T   

Isotopic effects in Debye-Waller factor and in extended X-ray absorption fine structure (EXAFS) have been 
studied. The studies are succeeded based on anharmonic correlated Einstein model for isotopes derived for 
providing analytical expressions of cumulants containing isotopic effects and for application of these cumulants 
to EXAFS of isotopes. Advantageous development here is creation of a method giving not only the isotopic effects 
but also the considered quantities only from second cumulant. The model is simplified by using one-dimension 
with taking many-body effects into account based on including nearest neighbor contributions to vibrations 
between absorber and backscatterer isotopic atoms. Morse potential is assumed to describe single-pair isotopic 
atomic interaction. Isotopic effects evidenced in cumulants, EXAFS spectra and their Fourier transform magni
tudes of Ni isotopes calculated by present theory are found to be in good similarity to those obtained in 
experimental results of 70Ge and 76Ge.   

1. Introduction 

Extended X-ray absorption fine structure (EXAFS) has developed into 
a powerful technique for providing information on local atomic struc
ture and thermal effects of the substances, where the Debye-Waller 
factor (DWF) accounts for the effects of atomic thermal vibrations. 
This DWF damps EXAFS spectra with respect to increasing temperature 
T and wave number k (or energy). The effects concerning temperature 
and anharmonicity dependence in EXAFS are oft evaluated based on 
cumulant expansion approach (Crozier et al., 1988). This procedure is 
successfully applied to several models like the anharmonic correlated 
Einstein model (ACEM) (Hung and Rehr, 1997), anharmonic correlated 
Debye model (Hung et al., 2010), path integral calculation (Yokoyama, 
1998), force constant model (Poiarkova and Rehr, 1999), dynamic 
matrix calculation (Vila et al., 2007), EXAFS Mössbauer study (Daniel 
et al., 2004) and several others. They provide different methods for 
studying the thermodynamic properties and anharmonic effects of the 
considered crystals based on DWFs presented in terms of cumulant 
expansion. In EXAFS experiment, the probes are the individual photo
electrons emitted by X-ray absorbing atoms and backscattered by 

neighboring atoms. Because of the photoelectrons short range, EXAFS 
can give original information on the local dynamics of crystals. The 
dynamical properties of crystals mainly depend on the atomic number of 
the constituent atoms. The isotopic composition influences on some 
basic properties, like, density, phonon widths, and electronic energy 
gaps (Cardona and Thewalt, 2005). The zero-point amplitude of atomic 
vibrations is also influenced by the nuclear masses. Isotopic effects are 
relevant not only for their basic scientific interest, but also for several 
possible technological applications (Plekhanov, 2006). 

Many efforts have been made to study the isotopic effects. The 
dependence of dynamical properties of crystals on isotopic composition 
is intensively studied (Cardona, 2000). The basic theory of isotopic ef
fect on lattice constants has been derived (London, 1958). The depen
dence of the lattice constants of some semiconductors has been 
theoretically evaluated in the quasi-harmonic approximation using 
phonon frequencies calculated from first principles via 
density-functional perturbation theory (Pavone and Baroni, 1994). 
Path-integral Monte Carlo simulations have been performed for isotopes 
of Ge on the basis of a Stillinger-Weber potential (Noya et al., 1997). 
EXAFS has been measured on two powdered samples of 70Ge and 76Ge as 
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a function of temperature from 20 to 300 K (Purants et al., 2008). Un
fortunately, a theoretical work on the calculation and analysis of the 
isotopic effects, as well as the values of DWFs presented in terms of 
cumulant expansion and of EXAFS of isotopes is still not available. 

The purpose of this work is to study not only the isotopic effects but 
also the values of DWFs presented in terms of cumulant expansion and of 
EXAFS of isotopes. The successes of these studies presented in Section 2 
are based on the ACEM for isotopes quantum statistically derived with 
the purposes firstly for providing the analytical expressions of three first 
EXAFS cumulants containing the isotopic effects, and secondly, for 
application of these cumulants to study EXAFS of isotopes. The advan
tageous development in the present theory is creation of a method 
providing not only the isotopic mass difference effects but also the 
values of the considered quantities only from those of second cumulant. 
This model is simplified by using one-dimension with taking the many- 
body effects into account based on the anharmonic effective potential 
that includes the interactions of absorber and backscatter isotopic atoms 
with all their nearest neighbors. Morse potential is assumed to describe 
the single-pair isotopic atomic interaction. The isotopic effect in each 
considered quantity is specified in the present theory based on the dif
ference of its values for two different isotopes. The advantage of the 
present ACEM for isotopes is possibility of its application to any isotopic 
structure. In Section 3 the derived expressions are applied to numerical 
calculations for the cumulants, EXAFS spectra and their Fourier trans
form magnitudes of Ni isotopes. The isotopic mass difference effects 
neatly evidenced in the considered quantities calculated using the pre
sent theory are compared to those obtained in the EXAFS experimental 
results of isotopes 76Ge and 70Ge (Purants et al., 2008) which show their 
good similarity. The conclusions are presented in Section 4. 

2. Anharmonic correlated Einstein model for isotopes 

2.1. Anharmonic effective potential 

Let us consider the present ACEM for isotopes characterized by an 
anharmonic interatomic effective potential expanded to the third order 

Veff (x)=
1
2
keff x2 + k3eff x3 + ⋯, x = r − r0⋅, (1)  

where keff is effective local force constant, k3eff is effective cubic 
parameter giving an asymmetry of the potential due to anharmonicity, 
and x is deviation of instantaneous bond length between the two isotopic 
atoms r from its equilibrium value r0. 

Because isotopes are monatomic the anharmonic effective potential 
given by Eq. (1) is defined in the present ACEM for isotopes based on an 
assumption in the center-of-mass frame of single-bond pair of absorber 
and backscatterer isotopic atoms as 

Veff (x)=V(x) +
∑

i=a,b

∑

j∕=a,b

V
(

1
2
xR̂

0
⋅ R̂ij

)

, (2)  

where the first term on the right concerns only absorber and backscatter 
isotopic atoms, the remaining sums extend over their nearest neighbors 
describing the lattice contributions to pair interaction and depends on 

isotope structure type. Here R̂
0 

is direction unit vector linking absorber 
and backscatter, and R̂ij is the unit vector along the bond between ith 
and jth atoms. 

Comparing Eq. (1) to Eq. (2) the parameters keff and k3eff of the 
anharmonic effective potential of isotopes are determined. They are 
different for different isotopic structures. 

Hence, the anharmonic effective pair potential given by Eq. (2) de
scribes not only pair interaction of absorber and backscatter isotopic 
atoms themselves, but also an effect of their nearest neighbors on such 
interaction due to that the many-body effects are taken into account. By 
this way the complicated quantum statistical task of many-body system 

for isotopes in EXAFS theory is simplified into the one of one- 
dimensional model. 

Note that the anharmonic effective potential method (Hung and 
Rehr, 1997) has been successfully applied to EXAFS valuations of ther
modynamic properties and anharmonic effects of fcc (Hung and Rehr, 
1997; Hung et al., 2010; Daniel et al., 2004), bcc (Hung et al., 2016), hcp 
(Hung et al., 2017) crystals and semiconductors (Toan and Hung, 2019) 
by providing good agreement between the theoretical and experimental 
results, and now it is applied to the present ACEM for isotopes. 

2.2. EXAFS cumulants containing isotopic effects 

Derivation of EXAFS cumulants in the present ACEM for isotopes is 
based on quantum statistical theory (Feynman, 1972) and the anhar
monic effective potential presented in the previous section. The physical 
quantities are now determined based on an averaging procedure using 
the canonical partition function Z and statistical density matrix ρ, e.g., 

〈ym〉=
1
Z
Tr(ρ ym), m= 1, 2, 3,⋯ (3) 

Atomic vibrations are quantized in terms of phonons, and anhar
monicity is the result of phonon-phonon interaction, that is why we 
express y in terms of the annihilation and creation operators, â and â+, 
respectively 

y≡ a0(â+ â+
), a2

0 =ℏωE
/

2keff , (4) 

As well as use the harmonic oscillator state |n〉 as the eigenstate with 
the eigenvalue En = nℏωE for n being the phonon number, ignoring the 
zero-point energy for convenience. 

The correlated Einstein frequency ωE contained in Eq. (4) and then 
the Einstein temperature θE in the present ACEM for isotopes have the 
following forms 

ωE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2keff
/
M

√

, θE = ℏωE

/
kB, (5)  

where M is isotopic atomic mass and kB is Boltzmann constant. 
The correlated Einstein frequency ωE and temperature θE given by 

Eq. (5) contain the mass parameter M describing the isotopic effects 
based on its difference for different isotopes. It leads to the isotopic ef
fect in the canonical partition function Z included in Eq. (3) which for 
weak anharmonicity in EXAFS approximates its equilibrium value Z0 as 

Z ≅ Z0 =
∑

n
e− nβℏωE =

∑∞

n=0
zn =

1
1 − z

, z= exp(− θE / T), (6) 

Containing the temperature parameter z depending on correlated 
Einstein temperature θE. 

Therefore, the physical quantities determined by Eq. (3) in the pre
sent ACEM for isotopes evidently contain the isotopic mass difference 
effects. 

Using the above results for the correlated isotopic atomic vibration 
and the procedure depicted by Eqs. (3)–(6), as well as the first-order 
thermodynamic perturbation theory (Feynman, 1972) the 
temperature-dependent EXAFS cumulants in the present ACEM for iso
topes have been derived. 

Consequently, the EXAFS cumulants in the present ACEM for iso
topes have resulted for the first cumulant describing net thermal 
expansion or isotopic lattice disorder 

σ(1)(T)= a = σ(1)
0

1 + z(T)
1 − z(T)

=
σ(1)

0

σ2
0
σ2(T) , σ(1)

0 = −
3k3eff

keff
σ2

0, (7) 

For the second cumulant describing mean square relative displace
ment (MSRD) 

σ2(T)= 〈y2〉 = σ2
0
1 + z(T)
1 − z(T)

, σ2
0 =

ℏωE

2keff
, (8) 
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And for the third cumulant or mean cubic relative displacement 
(MCRD) describing the asymmetry of the pair distribution function 

σ(3)(T)= 〈y3〉= σ(3)
0

[
3
(
σ2(T)

/
σ2

0

)2
− 2

]
, σ(3)

0 = −
2k3eff

keff

(
σ2

0

)2⋅ (9) 

From the above results we obtain a simple relation between cumu
lants for the present model 

σ(1)σ2

σ(3) =
1

2 − (4/3)(σ2
0/σ2)

2⋅ (10) 

In the above obtained expressions σ(1)
0 , σ2

0, σ(3)
0 are zero-point energy 

contributions to the cumulants σ(1) (T), σ2(T), σ(3) (T), respectively. 
Note that the obtained cumulants given by Eq. (7) – (9) and their 

relation given by Eq. (10) in the present ACEM for isotopes contain the 
isotopic mass difference effects simply based on the presentation of these 
quantities in terms of second cumulant given by Eq. (8) including the 
correlated Einstein frequency ωE given by Eq. (5) and the temperature 
parameter z given by Eq. (6) containing the isotopic mass difference 
effects. Such advantage leads to creating a method providing not only 
the isotopic effects but also the values of the considered quantities only 
from the second cumulant. Moreover, this method also leads to signifi
cant reduction of numerical calculations of the considered quantities 
based on only the calculation of second cumulant. It will be used in 
Section 3 for numerical calculations of the considered quantities. 

2.3. Low- and high-temperature limit 

It is useful to consider the low-temperature (LT) and high- 
temperature (HT) limits of the considered quantities in the present 
ACEM for isotopes. In the LT limit z → 0, so that the terms with z2 and 
higher powers can be neglected, and in the HT limit it is approximated 
that z ≅ 1 − ℏωE/kBT. Using these approximations the expressions of 
cumulants given by Eqs. (7)–(9) and their relation given by Eq. (10) have 
been transformed into those for the LT and HT limits which are written 
in Table 1. 

2.4. Application to EXAFS of isotopes 

The cumulants derived in the previous section can be applied to 
EXAFS of isotopes whose expression according to the cumulant expan
sion approach is given by 

χ(k)= S2
0N
kR2 F(k)e− 2R/λ(k)Im

{

eiΦ(k) exp

[

2ikr0 +
∑∞

n=1

(2ik)n

n!
σ(n)(T)

]}

, (11)  

where k and λ are the wave number and mean free path of emitted 
photoelectron, respectively, F(k) is the real atomic backscattering 
amplitude, Φ(k) is net phase shift, N is atomic number of a shell, S2

0 is the 

intrinsic loss factor due to many-electron effects, R = 〈r〉 with r being the 
instantaneous bond length between absorber and backscatterer isotopic 
atoms, r0 is the equilibrium value of r, and σ(n) (n = 1, 2, 3, …) are the 
cumulants describing DWFs. 

Note that the cumulants contained in the EXAFS expression given by 
Eq. (11) can be presented in terms of second cumulant containing the 
isotopic mass difference effects as it was done in section 2.2. This leads 
to including the isotopic effects in EXAFS spectra and their Fourier 
transform magnitudes based only on those of second cumulant. By such 
way we also can simplify the calculation and analysis of the considered 
quantities using the present ACEM for isotopes. 

3. Numerical results and discussions 

Now we apply the expressions derived in the previous section to 
numerical calculations for Ni and its isotopes. 

Based on fcc structure of Ni and its isotopes the anharmonic effective 
potential given by Eq. (2) has been calculated and resulted as 

Vfcc
eff (x)=V(x)+ 2V

(
−
x
2

)
+ 8V

(
−
x
4

)
+ 8V

(x
4

)
⋅ (12) 

Applying the Morse potential expanded up to the third order around 
its minimum 

V(x)=D
(
e− 2αx − 2e− αx)=D

(
− 1+ α2x2 − α3x3 +⋯

)
, (13)  

where α describes the width of the potential and D is the dissociation 
energy, to Eq. (12), as well as comparing the result to Eq. (1) the pa
rameters keff and k3eff of effective potential given by Eq. (12) for Ni and 
its isotopes presented in terms of Morse potential parameters are 
determined. 

For Ni we have D = 0.4205 eV, α = 1.4199 Å− 1 (Girifalco and Weizer, 
1959) which were obtained using experimental values for the energy of 
sublimation, the compressibility, the lattice constant and are applied to 
all Ni isotopes because of Morse potential independence on atomic mass. 
They have been used to calculate the effective local force constant keff , 
effective anharmonic cubic parameter k3eff , correlated Einstein fre
quency ωE and temperature θE, and then three first EXAFS cumulants of 
Ni and its isotopes 68Ni, 50Ni, 40Ni. Some results are written in Table 2. 

Table 2 shows the different values of correlated Einstein frequency 
ωE and temperature θE, second cumulant σ2(T= 65 K) and interatomic 
distance R(T= 65 K) of isotopes 68Ni, 50Ni, 40Ni calculated using the 
present theory. They increase as the atomic mass numbers of isotopes 
decrease. These results illustrate the clear dependence of the considered 
quantities on atomic mass numbers of isotopes describing the evidenced 
isotopic mass difference effects of these considered quantities calculated 
using the present theory. The equality of the effective local force con
stants keff of all considered Ni isotopes is similar to the one of local force 
constants obtained in EXAFS experiment of isotopes 76Ge and 70Ge 
(Purants et al., 2008). We apply here the average interatomic distance in 
the form R(T) = 〈r〉 = r0 + σ(1)(T) (Yokoyama et al., 1996) so that its 
accuracy is limited due to not including the perpendicular MSRD (For
nasini et al., 2004) which can not be solely obtained from EXAFS. It 
requires comparison to the three-dimensional XRD technique. 

The isotopic mass difference effects described by the dependence of 
the correlated Einstein frequencies ωE and temperatures θE of Ni and its 
isotopes 68Ni, 64Ni, 50Ni, 40Ni on their atomic mass M calculated using 

Table 1 
Three first EXAFS cumulants σ(1), σ2, σ(3) and their relation σ(1)σ2/ σ(3) of iso
topes in the LT (T → 0) and HT (T → ∞) limits.  

Quantities T → 0 T → ∞ 

σ(1) σ(1)0 (1 + 2z) − 3k3eff kBT/k2
eff  

σ2  σ2
0(1 + 2z) kBT/keff  

σ(3) σ(3)0 (1 + 12z) − 6k3eff (kBT)2
/k3

eff  

σ(1)σ2/

σ(3)
3(1 + 2z)2

/2(1 + 12z) 1/2 

Note from Table 1 that at high-temperatures the cumulants σ(1), σ2, σ(3) and their 
relation σ(1)σ2/ σ(3) of isotopes approach their classical values which do not 
contain the isotopic mass difference parameters describing the isotopic effects. 
But at low-temperatures the cumulants σ(1), σ2, σ(3) and their relation σ(1)σ2/

σ(3) contain zero-point energy contributions σ(1)0 , σ(2)0 , σ(3)0 and the parameter z 
so that they evidently contain the isotopic mass difference effects. 

Table 2 
The values of keff , ωE, θE, σ2(T = 65 K), interatomic distance R(T = 65 K) of 
isotopes68Ni,50Ni,40Ni calculated using the present theory.  

Isotopes keff (N /m) ωE(10+13Hz)  θE(K)  σ2(Å2)  R(Å)  

64Ni 6.915 3.5646 272.2843 0.0029 2.4920 
50Ni 6.915 4.0329 308.0545 0.0032 2.4924 
40Ni 6.915 4.5089 344.4154 0.0035 2.4928  
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the present theory are also clearly seen in Fig. 1a for ωE and in Fig. 1b for 
θE. Here ωE and θE decrease as the atomic mass M of isotopes increases. 
These isotopic effects are similar to those obtained in the EXAFS 
experimental results of isotopes 76Ge and 70Ge (Purants et al., 2008). 

The correlated Einstein frequency ωE and temperature θE calculated 
and presented in Fig. 1a and b and have been used for calculating the 
second cumulant. Fig. 2a illustrates temperature-dependent second 
cumulants σ2(T) or MSRDs of Ni and its isotopes 64Ni, 58Ni, 40Ni 
calculated using the present theory. Their clear differences describing 
the evidenced isotopic mass difference effects are valuated in the present 
theory based on the temperature-dependent differences Δσ2(T) for two 
different isotopes, e.g., σ2(64Ni) − σ2(40Ni) and σ2(64Ni) − σ(1)(50Ni)
(Fig. 2b). Both curves presented in Fig. 2b for these values describing the 
isotopic mass difference effects in second cumulant σ2(T) or MSRDs are 
significant at low-temperatures. They decrease as the temperature in
creases and approach zero-values indicating the disappearance of the 
isotopic effects at high-temperatures as it was obtained in the EXAFS 
experimental results of isotopes 76Ge and 70Ge (Purants et al., 2008). 

Further, we use the calculated second cumulants presented in Fig. 2a 
to obtain the results for the other considered quantities calculated using 
the present theory. Fig. 3a shows temperature-dependent first cumulant 
σ(1)(T) of Ni and its isotopes 64Ni, 50Ni, 40Ni describing the net thermal 
expansion or lattice disorder of these isotopes. The significant differ
ences between σ(1)(T) for the considered isotopes 64Ni, 50Ni, 40Ni 
(Fig. 3a) describing their isotopic mass difference effects are valuated in 
the present theory based on the temperature-dependent differences Δσ(1)

for two different isotopes, e.g., σ(1)(64Ni) − σ(1)(40Ni) and σ(1)(64Ni)−
σ(1)(50Ni) (Fig. 3b). The isotopic mass difference effects of σ(1)(T) pre
sented in Fig. 3a and b are significant at low-temperatures. They 
decrease as the temperature increases and disappear at high- 
temperatures (both curves describing σ(1)(64N) − σ(1)(40Ni) and 
σ(1)(64Ni) − σ(1)(50Ni) in Fig. 3b approach zero-values). 

Note that the isotopic mass difference effects obtained in 
temperature-dependent ineratomic distance R(T) of isotopes 64Ni, 50Ni, 
40Ni calculated using the present theory are totally similar to those of 
σ(1)(T) because R(T) is obtained from the expression R (T) = 〈r〉 = r0+

σ(1)(T) (Yokoyama et al., 1996). Here, ΔR(T) = Δσ(1)(T) so that the 
isotopic mass difference effects in the ineratomic distance R(T) of iso
topes 64Ni, 50Ni, 40Ni are the same as those of σ(1)(T) presented in 
Fig. 3b. 

Temperature-dependent third cumulant σ(3)(T) of isotopes 64Ni, 
58Ni, 40Ni describing MCRD or the asymmetry of pair-distribution 
function of the considered isotopes are presented in Fig. 4a. They are 
about the same as the one of Ni. Their differences describing the isotopic 
effects are negligible. It is understandable because the anharmonicity is 

dominant at high-temperatures (see Stern et al., 1991; Hung and Rehr, 
1997), but the isotopic mass difference effects disappear at these 
high-temperatures. Such property of σ(3)(T) for Ni isotopes is similar to 
the one obtained in the EXAFS experimental results of isotopes 76Ge and 
70Ge (Purants et al., 2008). 

The cumulant relation σ(1)σ2/σ(3) is oft considered in EXAFS studies 
(see for example Stern et al., 1991; Hung and Rehr, 1997). It is equal to 
1.5 at T = 0 K and approach the constant value of 1/2 at 
high-temperatures for fcc crystals (Hung and Rehr, 1997). The calcu
lated results using the present theory for this relation of isotopes 64Ni, 
58Ni, 40Ni presented in Fig. 4b are very different showing significant 
isotopic mass difference effects at low-temperatures. These isotopic ef
fects decrease as the temperature increases and disappear at 
high-temperatures (all curves approach the classical value of 1/2) (Stern 
et al., 1991). 

Note that the obtained values presented in the above figures for the 
cumulants and their relation of Ni isotopes show their clear dependence 
on isotopic atomic mass numbers. They increase as the isotopic atomic 
mass numbers decrease as in the EXAFS experimental results of isotopes 
76Ge and 70Ge (Purants et al., 2008) where σ2 of 70Ge is greater σ2 of 
76Ge. 

Further, we consider the isotopic mass difference effects in EXAFS 
calculated using the present theory. Based on the above obtained 
cumulants presented in terms of second cumulant containing the iso
topic mass difference effects we calculated EXAFS spectra of isotopes 
64Ni, 58Ni, 40Ni at T = 25 K (Fig. 5a) and their Fourier transform mag
nitudes (Fig. 5b) using the FEFF code (Rehr et al., 1991) modified by 
adding our expressions for the cumulants containing the isotopic effects. 
These obtained EXAFS spectra and their Fourier transform magnitudes 
are clearly different showing their isotopic mass difference effects. These 
isotopic mass difference effects appear only at a low-temperature (T =
25 K). Moreover, they are obtained only in the EXAFS amplitudes and in 
the peak heights of their Fourier transform magnitudes, but there is only 
a negligible phase shift of these quantities. It is understandable because 
the isotopic mass difference effects of second cumulant contributing to 
EXAFS amplitude are significant, but those of third cumulant contrib
uting to EXAFS phase are negligible. The isotopic mass difference effects 
evidenced in Fourier transform magnitudes of EXAFS spectra of isotopes 
64Ni, 58Ni, 40Ni calculated using the present theory here are also similar 
to those obtained in the EXAFS experimental results of isotopes 76Ge and 
70Ge (Purants et al., 2008). 

Note that the isotopic mass difference effects evidenced in the ob
tained EXAFS spectra and their Fourier transform magnitudes of iso
topes 64Ni, 58Ni, and 40Ni come from the cumulants contained in EXAFS 
equation given by Eq. (11) so that they also are significant at low- 
temperatures, decrease as the temperature increases and disappear at 

Fig. 1. Dependence of correlated Einstein (a) frequencies ωE and (b) temperatures θE of Ni and its isotopes 68Ni, 64Ni, 50Ni, 40Ni on their atomic mass M calculated 
using the present theory. 
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high-temperatures as the properties of these cumulants discovered 
above. Moreover, the peak of Fourier transform magnitude of 64Ni is 
higher the one of 58Ni as in the EXAFS experimental results of isotopes 
76Ge and 70Ge (Purants et al., 2008) where the peak of Fourier transform 
magnitude of 76Ge is higher the one of 70Ge. It is also understandable 
because the DWF (second cumulant) damps EXAFS spectrum. Here the 
second cumulant of 58Ni is greater the one of 64Ni so that its EXAFS 

spectrum is more damped leading to its peak of Fourier transform 
magnitude lower the one of 64Ni. 

4. Conclusions 

In this work the ACEM for isotopes has been quantum statistically 
derived for the calculation and analysis of not only the isotopic mass 

Fig. 2. Temperature-dependent (a) second cumulant σ2(T) of Ni and its isotopes 64Ni, 58Ni, 40Ni and (b) differences Δσ2(T) for two different isotopes, e.g., σ2(64Ni)−
σ2(40Ni) and σ2(64Ni) − σ(1)(50Ni) calculated using the present theory. 

Fig. 3. Temperature-dependent (a) first cumulant σ(1)(T) of Ni and its isotopes 64Ni, 50Ni, 40Ni, and (b) differences Δσ(1)(T) for two different isotopes, e.g., 
σ(1)(64Ni) − σ(1)(40Ni) and σ(1)(64Ni) − σ(1)(50Ni) calculated using the present theory. 

Fig. 4. Temperature-dependent (a) third cumulant σ(3)(T) and (b) cumulant relation σ(1)σ2/σ(3) of Ni and its isotopes 64Ni, 58Ni, 40Ni calculated using the pre
sent theory. 
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difference effects but also the values of DWFs presented in terms of 
cumulant expansion, EXAFS spectra and their Fourier transform mag
nitudes containing the isotopic effects. The model has the advantage 
shown by possibility of its application to any isotopic structure. 

The derived ACEM for isotopes has successfully simplified the 
quantum statistical task of many-body system for isotopes in EXAFS 
theory into the one of one-dimensional model with taking the many- 
body effects into account based on including the nearest neighbor con
tributions to the vibrations between absorber and backscatterer isotopic 
atoms. Here Morse potential is assumed to describe the single-pair iso
topic atomic interaction. 

The advantageous development in the present theory is creation of a 
method providing not only the isotopic mass difference effects but also 
the values of the considered quantities only from those of second 
cumulant. This method leads to significant reduction of numerical cal
culations and to simplification of analysis of the considered quantities. 

The derived theory is successfully applied to the calculation and 
analysis of the isotopic effects and the values of DWFs presented in terms 
of cumulant expansion, EXAFS spectra and their Fourier transform 
magnitudes of Ni isotopes. Moreover, the dependence of the calculated 
quantities on isotopic atomic mass numbers where the correlated Ein
stein frequency and temperature, three first cumulants, interatomic 
distance increase as the atomic mass numbers decrease leads to a 
conclusion that the lighter isotopes undergo lager oscillations than the 
heavier ones. All these results influence on the thermodynamic prop
erties and structural determination of the considered isotopes. 

The isotopic mass difference effects in DWFs presented in terms of 
cumulant expansion and in EXAFS are significant only at low- 
temperatures where the zero-point amplitude of atomic vibrations 
plays an important role. They decrease as temperature increases and 
disappear at high-temperatures. Hence, the isotopic mass difference 
effects can be evaluated only by quantum theory. 

The isotopic mass difference effects evidenced in correlated Einstein 
frequency and temperature, in DWFs presented in terms of cumulant 
expansion, in interatomic distance, EXAFS spectra and their Fourier 
transform magnitudes of Ni isotopes calculated using the present theory 
are found to be in good similarity to those obtained in the EXAFS 
experimental results of isotopes 76Ge and 70Ge. This illustrates the effi
ciencies and simplicity of the present theory in EXAFS studies of isotopic 
mass difference effects in the considered physical quantities. 
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