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Abstract

In this work, we have determined the mean square relative displacement, elastic
constant, anharmonic effective potential, correlated function, local force constant,
and other thermodynamic parameters of diamond-type structured crystals under
high-pressure up to 14 GPa. The parameters are calculated through theoretical
interatomic Morse potential parameters, by using the sublimation energy, the
compressibility, and the lattice constant in the expanded X-ray absorption fine
structure spectrum. Numerical results agree well with the experimental values and
other theories.

Keywords: Morse potential parameter, State equation, Correlation function, Elastic
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Introduction
High-pressure research is a very active research field. Recent progress has been re-

cently made in characterizing elastic, mechanical, and other physical properties of ma-

terial [1–3]. The use of interatomic Morse potentials in Expanded X-ray Absorption

Fine Structure (EXAFS) theory to study thermodynamic parameters under high-

pressure currently also attracts the attention of materials scientists.

In EXAFS spectra with the anharmonic effects, the anharmonic Morse potential [4]

is suitable for describing the interaction and oscillations of atoms in the crystals [5]. In

the EXAFS theory, photoelectrons are emitted by the absorber scattered by surrounded

vibrating atoms. This thermal oscillation of atoms contributes to the EXAFS spectra,

especially the anharmonic EXAFS [6, 7], which is affected by these spectra's physical

information. In the EXAFS spectrum analysis, the parameters of interatomic Morse po-

tential are usually extracted from the experiment. Because experimental data are not

available in many cases, a theory is necessary to deduce interatomic Morse potential

parameters. The only calculation has been carried out for cubic crystals by using an-

harmonic correlated Einstein model [8]. The results have been used actively for calcu-

lating EXAFS thermodynamic parameters [9] and are reasonable with those extracted
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from EXAFS data [10]. Therefore, the requirement for calculation of the anharmonic

interatomic Morse interaction potential due to thermal disorder for other structures is

essential.

The purpose of this study is to expand a method to calculate the interatomic

Morse potential parameters using the energy of sublimation, the compressibility,

and the lattice constant with the effect of the disorder of temperature. The re-

ceived interatomic Morse potential parameters are used to calculate the mean

square relative displacement (MSRD), mean square displacement (MSD), elastic

constant, anharmonic interatomic effective potential, and effective local force con-

stant for diamond-type (DIA) structure crystals such as silicon (Si), germanium

(Ge), and SiGe semiconductor. Numerical results are in agreement with the experi-

mental values and other theories [10–14].

Diamond’s cubic structure is in the Fd3m space group, which follows the face-

centered cubic Bravais lattice (Fig. 1). The lattice describes the repeat pattern, for dia-

mond cubic crystals, the lattice of two tetrahedrally bonded atoms in each primitive

cell, separated by 1/4 of the width of the unit cell in each dimension. The diamond lat-

tice can be viewed as a pair of intersecting face-centered cubic lattices, with each sepa-

rated by 1/4 of the width of the unit cell in each dimension. The atomic packing factor

of the diamond cubic structure is π√3/16, significantly smaller (indicating a less dense

structure) than the packing factors for the face-centered-cubic lattices. The first-, sec-

ond-, third-, fourth-, and fifth-nearest-neighbor distances in units of the cubic lattice

constant are √3/4, √2/2, √11/4, 1, and √19/4, respectively.

Methods

– This study uses the theoretical method to calculate the parameter of interatomic

Morse potential.

– Using the obtained interatomic Morse potential parameters to determine state

equations, calculate some thermodynamic parameters that depend on temperature

and pressure for some pure and doped crystals with a cubic structure.

– Compare the theoretical results with experimental data.

Fig. 1 Style of diamond’s cubic structure is in the Fd3m space group
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Methodology
The ε(rij) potential of atoms i and j separated by a distance rij is given in by the Morse

function:

ε rikð Þ ¼ D e−2α rij−roð Þ−2e−α rij−roð Þn o
; ð1Þ

where 1/α describes the width of the potential, D is the dissociation energy (ε(r0) = −

D); r0 is the equilibrium distance of the two atoms.

To obtain the potential energy of a large crystal whose atoms are at rest, it is neces-

sary to sum Eq. (1) over the entire crystal. It is quickly done by selecting an atom in

the lattice as origin, calculating its interaction with all others in the crystal, and then

multiplying by N/2, where N is the total number of atoms in a crystal. Therefore, the

potential E is given by:

E ¼ 1
2
ND

X
j

e−2α r j−roð Þ−2e−α r j−roð Þn o
: ð2Þ

Here rj is the distance from the origin atom to the jth atom. It is beneficial to de-

scribe the following quantities:

r j ¼ m2
j þ n2j þ l2j

h i1=2
a ¼ Mja; ð3Þ

where mj, nj, lj are position coordinates of atoms in the lattice. Substitute the Eq. (3)

into Eq. (2), the potential energy can be rewritten as:

E að Þ ¼ 1
2
NDeαr0 eαr0

X
j

e−2αaM j−2
X
j

e−αaM j

" #
: ð4Þ

The first and second derivatives of the potential energy of Eq. (4) concerning a, we

have:

dE
da

¼ −αNDeαr0 eαr0
X
j

M je
−2αaM j þ

X
j

M je
−αaM j

" #
; ð5Þ

d2E

da2
¼ α2NDeαr0 2eαr0

X
j

M2
j e

−2αaM j−
X
j

M2
j e

−αaM j

" #
: ð6Þ

At absolute zero T = 0, a0 is the value of a for which the lattice is in equilibrium, then

E(a0) gives the energy of cohesion, ½dEda�a0 ¼ 0, and ½d2E
da2

�
a0
is related to the compressibility

[15]. That is,

dE a0ð Þ ¼ E0 a0ð Þ; ð7Þ

where E0(a0) is the energy of sublimation at zero pressure and temperature,

dE
da

� �
a0

¼ 0; ð8Þ

and the compressibility is given by [8]
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1
κ0

¼ V 0
d2E0

dV 2

� �
a0

¼ V 0
d2E

dV 2

� �
a0

; ð9Þ

where V0 is the volume at T = 0 and κ0 is compressibility at zero temperature and pres-

sure. The volume per atom V/N is related to the lattice constant a by

V
N

¼ ca3: ð10Þ

Substituting Eq. (10) into Eq. (9) the compressibility is formulated by

1
κ0

¼ 1
9cNa0

d2E

da2

� �
a¼a0

: ð11Þ

Using Eq. (5) to solve Eq. (8), we obtain

eαr0 ¼

X
j

M je
−αaM j

X
j

M je
−2αaM j

: ð12Þ

From Eqs. (4, 6, 7, 11), we derive the relation

eαr0
X
j

e−2αaM j−2
X
j

e−αaM j

4α2eαr0
X
j

M2
j e

−2αaM j−2α2
X
j

M2
j e

−αaM j
¼ E0κ0

9cNa0
: ð13Þ

Solving the system of Eq. (12, 13), we obtain α and r0. Using α and Eq. (4) to solve

Eq. (7), we have D. The interatomic Morse potential parameters D, α depend on the

compressibility κ0, the energy of sublimation E0, and the lattice constant a. These

values of all crystals are available already [16].

Next, we apply the above expressions to claculate the equation of state and elastic

constants. It is possible to calculate the state equation from the potential energy E. If

we assumed that the Debye model could express the thermal section of the free energy,

then the Helmholtz energy is given by [8]

F ¼ E þ 3NkBT ln 1−e−θD=T
� �

−NkBTD θD=Tð Þ; ð14Þ

D
θD
T

� �
¼ 3

T
θD

� �3 ZθD=T
0

x3

ex−1
dx; ð15Þ

where kB is Boltzmann constant, and θD is Debye temperature.

Using Eqs. (14, 15), we derive the equation of state as

P ¼ −
∂F
∂V

� �
T

¼ 1
3ca2

dE
da

þ 3γGRT
V

D
θD
T

� �
; ð16Þ

where γG is the Grüneisen parameter, and V is the volume.

After transformations, the Eq. (16) is resulted as
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P ¼
NDeαr0α

X
j

M je
−αa0M j 1−xð Þ1=3

" #

3ca20 1−xð Þ2=3
−NDe2αr0α

X
j

M je
−2αa0M j 1−xð Þ1=3 þ 3γGRT

V 0 1−xð ÞD
θD
T

� �
; ð17Þ

x ¼ V 0−V
V 0

; V 0 ¼ ca30; R ¼ NkB; N ¼ 6:02� 1023: ð18Þ

The equation of state (17) contains the obtained interatomic Morse potential parame-

ters; c is a constant and has value according to the structure of the crystal.

An elastic tensor describes the elastic properties of a crystal in the crystal’s motion

equation. The non-vanishing components of the elastic tensor are defined as elastic

constants. They are given for crystals of lattice structure by [17]:

c11 ¼ c22 ¼
ffiffiffi
2

p
r0 10Ψ″ r20

� �þ 16Ψ″ 2r20
� �þ 81Ψ″ 3r20

� �
⋯

	 

−

ffiffi
2
3

q
−2Ψ″ r20

� �þ 16Ψ″ 2r20
� �

−40Ψ″ 3r20
� �

⋯
	 
n o2

ffiffiffi
2

p
r−10 4Ψ″ r20ð Þ þ 16Ψ″ 2r20ð Þ þ 12r−10 Ψ

0
2r20ð Þ⋯	 
 ; ð19Þ

c12 ¼
ffiffiffi
2

p
r0 10Ψ″ r20

� �þ 16Ψ″ 2r20
� �þ 81Ψ″ 3r20

� �
⋯

	 

3

þ

ffiffi
2
3

q
−2Ψ″ r20

� �þ 16Ψ″ 2r20
� �

−40Ψ″ 3r20
� �

⋯
	 
n o2

ffiffiffi
2

p
r−10 4Ψ″ r20ð Þ þ 16Ψ″ 2r20ð Þ þ 12r−10 Ψ

0
2r20ð Þ⋯	 
 ; ð20Þ

c33 ¼
ffiffiffi
2

p

3
r0 32Ψ″ r20

� �þ 32Ψ″ 2r20
� �þ 512

3
Ψ″ 3r20

� �þ⋯

� �
; ð21Þ

c13 ¼ c23 ¼
ffiffiffi
2

p
r0 8Ψ″ r20

� �þ 32Ψ″ 2r20
� �þ 112Ψ″ 3r20

� �þ⋯
	 


; ð22Þ

Ψ
0
rð Þ ¼ −2Dα e−2α r−r0ð Þ−e−α r−r0ð Þ

h i 1
r
; ð23Þ

Ψ″ rð Þ ¼ Dα2 2e−2α r−r0ð Þ−
1
2
e−α r−r0ð Þ

� �
1
r2

þ Dα e−2α r−r0ð Þ−e−α r−r0ð Þ
h i 1

2r3
: ð24Þ

Hence, the derived elastic constants contain the interatomic Morse potential

parameters.

Next, apply to calculate of anharmonic interatomic effective potential and local force

constant in EXAFS theory. The expression for the anharmonic EXAFS function [2] is

described by

χ kð Þ ¼ A kð Þ exp −2ℜ=λ kð Þ½ �
kℜ2 Im eiϕ kð Þ exp 2ikℜ þ

X
n

2ikð Þn
n!

σ nð Þ
" #( )

; ð25Þ

where A(k) is scattering amplitude of atoms, φ(K) is the total phase shift of photoelec-

tron, and k and λ are wave number and mean free path of the photoelectron, respect-

ively. The σ(n) are the cumulants; they describe asymmetric of anharmonic interatomic

Morse potential, due to the average of the function e−2ikr, ℜ = < r>, and r is the instant-

aneous bond length between absorber and backscatter atoms at T temperature.

For describing anharmonic EXAFS, effective anharmonic potential [9] of the system

is derived which in the current theory is expanded up to the third order and given by

Eeff xð Þ ¼ 1
2
keffx

2 þ k3effx
3 þ…þ ¼ E xð Þ þ

X
j¿i

E
μ
Mi

xR̂12:R̂ij

� �
; μ ¼ M1M2

M1 þM2
; ℜ̂ ¼ ℜ

j R j : ð26Þ

Here, keff is the effective local force constant, and k3eff is the cubic parameter charac-

terizing the asymmetry in the pair interatomic Morse potential, and x is the deviation

of instantaneous bond length between the two atoms from equilibrium. The correlated
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model defined as the oscillation of a pair of particles with M1 and M2 mass. Their vi-

bration influenced by their neighbors atoms given by the sum in Eq. (24), where the

sum i is over absorber (i = 1) and backscatterer (i = 2), and the sum j is over all their

near neighbors, excluding the absorber and backscatterer themselves whose contribu-

tions are described by the term E(x). The advantage of this model is a calculation based

on including the contributions of the nearest neighbors of absorber and backscatter

atoms in EXAFS. The anharmonic interatomic effective potential Eq. (26) has the form

Eeff xð Þ ¼ Ex xð Þ þ 2Ex −
x
2

� �
þ 8Ex −

x
4

� �
þ 8Ex

x
4

� �
: ð27Þ

Applying interatomic Morse potential given by Eq. (1) expanded up to 4th order

around its minimum point

Eeff xð Þ ¼ D e−2αx−2e−αx
� �

≈ D −1þ α2x2−α3x3 þ 7
12

α4x4…

� �
: ð28Þ

From Eqs. (26)–(28), we obtain the anharmonic effective potential Eeff, effective local

force constant keff, anharmonic parameters k3eff for lattice crystals presented in terms

of our calculated interatomic Morse potential parameters D and α.

In Eq. (25), σ(n) is cumulants, in which σ2(T) is the Debye-Waller factor (DWF) or

MSRD [9]. In the diffraction or X-ray absorption, the DWF has a form similar u2(T). In

the EXAFS spectrum, DWF is regarded as to correlated averages over the relative dis-

placement of σ2(T) for a pair of atoms, while neutron diffraction allude to the MSD

u2(T) of an atom [18]. From σ2(T) and u2(T), the correlated function CR(T) to describe

the effects of correlation in the vibration of atoms can be deduced. Using the anhar-

monic correlated Debye model (ACDM), the MSRD σ2(T) has the form [19]:

σ2 Tð Þ ¼ ℏa
10πDα2

Zπ=a
0

ωA qð Þ 1þ zA qð Þ
1−zA qð Þ dq; ð29Þ

z qð Þ ¼ e− βℏωA qð Þð Þ; ωA qð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
10Dα2

M

r
sin qa=2ð Þj j; qj j≤π=a: ð30Þ

Similarly, for the anharmonic Debye model, u2(T) have been determined as:

u2 Tð Þ ¼ ℏa
16πDα2

Zπ=a
0

ωD qð Þ 1þ zD qð Þ
1−zD qð Þ dq; ð31Þ

Table 1 Morse potential parameters D, α and the related parameter r0 of Si, Ge, and SiGe in
comparison to some experimental results [10, 14]

Crystal β α (Å−1) D (eV) r0(Å)

Si (present) 120.110 1.3642 0.9862 2.8429

Si (expt.) – 1.3106 – 2.7503

Ge (present) 327.210 1.5569 0.9675 2.8319

Ge (expt.) – 1.4105 – 2.7442

SiGe (present) – 1.4606 0.9769 2.7934
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zD qð Þ ¼ e− βℏωD qð Þð Þ; ωD qð Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
8Dα2

M

r
sin qa=2ð Þj j; qj j≤π=a; ð32Þ

where a is the lattice constant, ω(q) and q are the frequency and phonon wavenumber,

and M is the mass of composite atoms.

Results and discussion
To receive the interatomic Morse potential parameters, we need to calculate the par-

ameter c in Eq. (10). The space lattice of the diamond is the fcc. The primordial basis

has two identical atoms connected with each point of the fcc lattice, one atom at (0 0

0) position, which has the atomic Wyckoff positions for the predicted phases at the am-

bient condition of 4a, and one atom at (1/4 1/4 1/4) with the atomic Wyckoff positions

of 8c. Thus, the conventional unit cube contains eight atoms so that we obtain the

value c = 1/4 for this structure.

Applying the above derived expressions, we calculate thermal parameters for DIA

structure crystals (Si, Ge, and SiGe) using the lattice constants [11], the energy of sub-

limation [15], and the compressibility [20].

The numerical results of the interatomic Morse potential parameters are presented in

Tables 1 and 3. The theoretical values of D, α fit well with the experimental values [10,

14]. The elastic constants ci, effective spring force constants keff and effective spring

cubic parameters k3eff calculated by interatomic Morse potential parameters for Si, Ge,

and their alloys are presented in Tables 2 and 3 and compared to the experimental

values [11, 15].

The calculated results for the state equation are illustrated in Fig. 2 for Si crystal and

Fig. 3 for Ge crystal compared to the experimental ones (dashed line) [10] represented

by an extrapolation procedure of the measured data. They show a good agreement be-

tween theoretical and experimental results, especially at low pressure.

Figures 4 and 5 illustrate good agreement of the anharmonic interatomic effective po-

tentials for Si, Ge, and SiGe semiconductor calculated by using the present theory

(solid line), and the experiment values obtained from interatomic Morse potential

Table 2 Values elastic constants (× 10−11 N/m) for Si, Ge by present theory and experimental
values [11]

Crystal c11 c12 c13 c33

Si (present) 1.85 0.64 0.55 2.13

Si (expt.) 1.77 0.41 0.61 1.54

Ge (present) 1.46 0.57 0.46 1.63

Ge (expt.) 1.35 0.52 0.52 0.57

Table 3 Morse potential parameters, spring force constants, and cubic parameters under pressure
effects up to 14GPa

Pressure (GPa) D (eV) α (Å−1) keff (eV/Å
2) k3eff (eV/Å

3)

0 0.3376 1.3588 3.1396 0.6423

5 0.3154 1.3485 2.9032 0.6415

10 0.2977 1.3168 2.7428 0.5902

14 0.2184 1.2854 2.3595 0.5527
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parameters of J. C. Slater (solid line and symbol □) [10], and simultaneously show

strong asymmetry of these potentials due to the anharmonic contributions in atomic vi-

brations of these DIA structure crystals which are illustrated by their anharmonic shift-

ing from the harmonic terms (dashed line).

Figures 6 and 7 shows dependence on pressure and temperature of MSRD σ2(T) and

MSD u2(T) for Si and Ge crystals. MSRD and MSD linear proportional to the

temperature T at high temperatures so the classical limit can be applied. At low tem-

peratures, the curves of MSRD and MSRD for Si and Ge contain zero-point energy

contributions; this is a quantum effect. The calculated results of MSRD and MSD for

the Si, Ge crystals agree well with the values of the experiment [10]. Thus, it is possible

Fig. 2 The dependence of volume ratio (V0-V)/V0 on pressure P in the equation of state for a silicon atom

Fig. 3 The dependence of volume ratio (V0-V)/V0 on pressure P in the equation of state for a germani atom

Nguyen and Trinh Journal of Engineering and Applied Science           (2021) 68:17 Page 8 of 12



to deduce that the present proceduce for diamond-type structure crystals such as Si,

Ge crystals is reasonable.

Conclusions
In this work, a calculation method of interatomic Morse potential parameters and ap-

plication for DIA and fcc structure crystals have been developed based on the calcula-

tion of volume and number of an atom in each basic cell and the sublimation energy,

Fig. 4 Anharmonic effective potential for Si and SiGe semiconductor and comparison with harmonic effects

Fig. 5 Anharmonic effective potential for Ge and SiGe semiconductor and comparison with
harmonic effects
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Fig. 6 Dependence on temperature of mean square displacement MSD under pressure effects up
to 14 GPa

Fig. 7 Dependence on temperature of mean square relative displacement MSRD under pressure effects up
to 14 GPa
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compressibility, and lattice constant. The results have applied to the mean square rela-

tive displacement, mean square displacement, the state equation, the elastic constants,

anharmonic interatomic effective potential, correlated function, and local force constant

in EXAFS theory.

Derived equation of state and elastic constants satisfy all standard conditions for these

values, for example, all elastic constants are positive. The interatomic Morse potentials

obtained satisfy all their basic properties. They are reasonable for calculating and analyz-

ing the anharmonic interatomic effective potentials describing anharmonic effects in

EXAFS theory. This procedure can be generalized to the other crystal structures based on

calculating their volume and number of an atom in each elementary cell.

Reasonable agreement between our calculated results and the experimental data show

the efficiency of the present procedure. The calculation of potential atomic parameters

is essential for estimating and analyzing physical effects in the EXAFS technique. It can

solve the problems involving any deformation and of atom interaction in the diamond

structure crystals.
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