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THEORY OF THERMAL EXPANSION AND CUMULANTS

IN XAFS TECHNIQUE

NGUYEN VAN HUNG, NGUYEN BA DUC,
AND DINH QUOC VUONG '
Faculty of Physics, University of Science, VNU-Hanoi.

Abstract. A new theory of thermal expansion and cumulants in XAFS has been formu-
lated, developing further the anharmonic-correlated Einstein model. The expressions were
derived for spring constant, Einstein temperature, Einstein frequency, first cumulant or net
thermal expansion describing an asymmetry of interaction potential, second cumulant or
Debye-Waller factor; third cumulant, and thermal expansion coefficient. The cubic para-
meter of interaction potential is included in all expressions describing anharmonic effects.
Derivation is based on quantum statistical procedure and the results describe thermody-
namic properties of crystals for any structure and any temperature. Some new Structural
parameters have been developed describing atomic distribution in XAFS technique.

I. INTRODUCTION

It is known that X-ray Absorption Fine Structure (X AL S) provides information on
atomic number and radius of atomic shell of substances and hence becomes a powerful
structural analysis technique. But two things are still required to solve: firstly, several
uncertainties in the information on the atomic shell radius occur due to thermodynamic
effects, especially at high temperatures, where the anharmonic contributions must be in-
cluded [1, 2]; secondly, still no exact method for determination of atomic distribution or
structure has been formulated. To solve the first problem the cumulant expansion approach
[3] has been developed. According to this approach the X AF'S function for a single shell
is described with in the frame work of a single-scattering and plane-wave approximation
by

X(k) = A(k)Im [ew(k) <eéikr>] = A(k)Im {ei‘l’(k)emp {Zikn‘o—l- E —-—(2?‘)” U(n)} ,
) = !
(1)

where k, A, ® are the wave number, amplitude, and total phase shift of photoelectron,
respectively, r is the instantaneous distance between absorbing and backscattering atoms,
and 7y is its value at the equilibrium or minimum position of the interaction potential, the
brackets <> denote a thermal average, and (™ are the cumulants. This approach has been
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2 NGUYEN VAN HUNG , NGUYEN BA DUC, AND DINH QUOC VUONG

used mainly in fitting the X AF'S spectra to extract physical parameters from experimental
data. The anharmonic single-particle potential theory [6], single-bond spring constant [5],
full-lattice dynamical procedure [11], and anharmonic-correlated Einstein model [4] have
been developed to approximate cumulants in X AFS spectroscopy. The comparison of
these methods will be discussed in the Section 5 of present paper.

Contributing to solving the first problem in this work we develop further the an-
harmonic - correlated Einstein model, deriving general expressions for thermal expansion
and X AF'S cumulants which are valid for any structure and any temperature. Then the
results for fcc and bee structure published before [8, 9] as well as for simple cubic (s.c.)
obtained in this work are only the special cases of present theory.

To solve the second problem from our developed theory some parameters will be de-
rived as the new structural parameters describing atomic distribution in structural analysis
by XAFS. Attention will be focused on cubic crystals and the advantages of present
procedure in comparison with other methods will be discussed in details.

I1. DERIVATION OF THERMODYNAMIC PARAMETERS

Thermodynamic properties of substances are known as the results of their thermal
atomic vibraiion. At low temperatures this vibration is harmonic, but anharmonic con-

tributions must be included at high temperatures [1-4]. Present derivation is based on'

- quantum statistical procedure with quasi-harmonic approximation, according to which the
Hariltonian of the system is written as a harmonic term with respect to the equilibrium at
a gi sen temperatire, plus an anharmonic perturbation

2 2
4 7 : . P 0
] s ;27; S UE (117) = H0+ UE (a) +5UE (y); Ifo = Z + -ékeffyz, (2)
where
MoM ;
BiF X0 U TG G AT b e =0, 3
T=r—r;Yy=a—0a={x); Mot M (v) (3)

Here 11 is reduced mass of absorber with mass M, and backscatterer with mass M X
and rp have the same meaning as for Eq.(1). We define y to be the deviation from the
equilibrium value of z at temperature 7" and determine the net thermal expansion a(T) =<
r — ro > which characterizes an asymmetry in the interaction potential (Fig.1). This
asymmetry occurs due to anharmonic effects.

According to anharmonic-correlated Einstein model [4] the interaction between ab-
sorber and backscatterer is via an effective-anharmonic Einstein potential

i - AA
[]E (III) == §k:eff$2 + k,'3;[,‘3 + ...+ X U (7{2—.? ROIRij) . (4)
‘ i ~

This potential includes anharmonicity parameter k3 describing an asymmetry or
skew in the pair distribution function and the contributions of a small atom cluster, sur-
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rounding the absorbing and backscattering atoms, and therefore, spring constant becomes
an effective one k.rr. The contributions of such clustet is described in Eq.(4) by the sum
i which is over absorber (i = 0) and backscatterer (r = 1), and the sum j which is over
all their near neighbors, excluding the absorber and backscatterer themselves. The lat-
ter contributions are described by the term U(z), and Rin Eq.(4) is the unit bond length
vector. : L

From Eqs.(2-4) the interacting effective Einstein potential is given by

: 1
Us (y) = Ug (a) + §kaffy2 + 6Ux (y) (%)
Theinteraction between atoms of each pair in the single bond can be via an imperical

potential like Lennard-Jones, or Morse, or Mardelung potential. In this work we use an
anharmonic Morse potential which is appropriate for cubic crystals.

5
| W/
|

0 x, displacement —

Fig. 1. Potential energy U and net thermal expasion a = (z) decribing an asymmetry of
interaction potential. Dashed line describes symmetry potential

Expanded to third order about its minimum this model becomes.

U(x) =D (e —2¢7**) m D (-1 +o*z* - a’z® +..), (6)
where D is dissociation energy, and corresponds to the width of potential. It is sufficient
to consider weak anharmonicity, i.e., the first order perturbation theory, so that only the
cubic term in this equation must be kept.

Substituting (6) into Eq.(4) and using Eq.(5) we derived the following expressions

kerr = ¢; (Da? + coaks) = pwk; ky = —c3Da’; (7
6UE (y) = (c] Da’a + 3k3a2) Y+ Ic3y3 S cl.Daz3ay -+ k:3y3
= D&’ (clay — c3ay3) ; (®)
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Here the factors c1, ¢z and c3 contain the sum of the projection of contributions of With ¢
near neighbors to the pair potential between absorber and backscatterers, i.e., the scalar :
product in Eq.(4). Therefore, they characterize the distribution of neighboring atoms sur-
rounding the absorber and backscatterer and are different for different structures. They
were derived for cubic crystals and are presented in Table 1.

Table 1 : The values of atomic distribution parameters €1, 2, and cs derived for s.c., whe
fec, and b crystals e
Structure _ Cp Cs C3
8.¢ 3 , 1 : 5/ -
fee 5 : . 65 5/4
. el
bee 11/3 \ 18/11 5/4

Moreover, the anharmonicity parameter ks is included in each of (7), (8), and we
li;cited only its first order due to weak anharmonicity.

Now we use the first-order thermodynariic perturbation theory [7] to derive the
fc.rmulas for the cumulants and the thermal expansion coefficient. The atomic vibration

i+ quantized as phonon and anharmonicity is the result of phonon interaction. Therefore,
. Bouss L A AP, = 4
we express y In terms of annihilation and creation operators, @ anda ,1.e€, 1

.+ ;
y=o0" (3 +0 ) . o® = (h/2pwg)"", )

and use the harmonic oscillator states |n) as eigenstates with eigenvalues [o, = nhwg ,
ignoring the zero-point energy for convenience.

The cumulants are expressed by the average value of v, that’s why, to derive their
formulas we use the expression [7] :

" .
(y™) = -7—T7'py""' e = 1,2,8, (10)

where p = ¢ P! with 8 = 1/kpT is the statistical density matrix, Z = Trp is the canon-
ical partition function, and kp is Boltzmann’s constant. The corresponding unperturbed
quantities are py = c-BHo and Zo = Trpg . To leading order in the perturbation 6Ug,
p = po + 0p, where 6p is given by i

Jé]
6p =~ / e#1I05 Uy, (8)dff 5 6 U (8) = *°6Upe *™- an

0
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With the above arguments we have

ZO ZE c—nﬁf‘sz A E e ____i ; i ~ (12)
: n=0

n

where the temperature variable z = =& = ¢=%2/T is determined by the Einstein
temperature, derived from Eqs.(2-4)

h

: . 1. he
Og = i [Cl (Daz + C2a’€3) /ﬂ] = e [e1D (1 — eacs0a) /:“]
5 ,

o

(13)

For further derivation of expressions for the cumulants we calculated the matrix
elements '

= (00)2(2n+ L

(nly?|n)

(i +1) = *(m+1)? ; (14)
)
)

(1

Pl +1) = 3(a%)*(n+ 1)°

3

(nly'ln+3) = (0°) (n+1) (n+2) (n+3)

and applied the following mathematical expressions

Yot = gl Doert= g Bee =
’ - " 2 1+Z . ; n n 4 n n —_ 6
Zz (n+1)? = TP gz (n+1)( +2)(:+3)-—(1_Z)4

We neglected all the terms containing a® with s > 2 due to the weak anharmonicity.
From Eq.(10), first equation of (14) and first equation of (15) we obtam for the even
cumulants

hwE 1+ =2
il g

1 1 —nOh
= (") = 5 Trey" = - Trpoy’ = 7 X e~ (ny?|n)= (16)

By performing the intergral in Eq. (11) over B’ and evaluating the traces, the remaining
odd moments are given by

1 e BEn _ g PEy

W) =g 2 p—g, U@ M), a7

o+ 2%
z)4

(15)
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Using Eqs.(10), (17) we obtain for m. = 1 A
. 9 02

1 142
Y) = — =~ —Tr =
{y) 7 1Py Zo [ TPOY =

1 D(’)?a + 3k (0¢)? T

(18)

By setting < y >= 0 we obtain from Eqs.(7), (16), (18) the first cumulant or net thermal
expansion

31133 (A (2) L 3C3’iw1ij l + pA - 363(10(2)

W) = q=2 = — = 19
3 i 2c3D%t 1 — 2 ¢1Da? 22Da 1—2 o \( )
and hence, the second cumulant 0® which is equal Debye-Waller factor o2
; hw g 1

¢ = 9e.Do?l -2

Since 6Up (y) has the expression (8) to leading order in k3 and m = 1 or 3, the
matrix elements only couple n to n & 1, n43. Also, making use of the hermiticity of
6Ug (y) and y™, we can demonstrate the equivalence of the n' = n + 7 terms in Eq.(17).
Therefore, from Egs.(7) and (17) we derived the third cumulant

@ ks (hwp)® 14+ 102 + 22 3¢z (hwp)® 1 + 10z + 22

= s el s 21).
2¢3 D3 (o= 3)2 2¢3 D203 (1 — 3)2 20
Using Eqs.(7, 19) we derived the thermal expansion coefficient
Skskp =z (lnz)2 3k 2 (lnz)z v
= E——e : 22
e aD%atr (1= Z)z ciDar (1— Z)z @)
From above results it is easy to get the following relations
arrTo®  3z(142)In(l/2) 23)
o® T (1-2)(14+10z+22)°
oWg? | 3(1+2)° (24)
o® T 2(14+10z+2%)

Note that o), o), v contain the anharmonicity parameter k3, and occur only when
this parameter is included, that is why o)), s®and a; must be taken into account for
consideration of anharmonic effects in X AF'S technique.

Il. DESCRIPTION OF THERMODYNAMIC PARAMETERS BY
DEBYE-WALLER FACTORS

One of our important efforts is to simplify the theoretical description, so that it can
lead to reducing the numerical calculations and measurements. For this purpose we may
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describe the tempe-ature variable in term of Debye-Waller factor o

o G | (25)
o?+of

 Using Eq. (25) we get all expressions derived in the previous section for thermodynamic
parameters in the following forms '

nl+z 3eo 1 3c3q " _
: 1+2 ; hwg
TR, D e E_
e (701 -z 0 2¢1Da?”’ Cr
' 2\ 2 972
G) _ (3)3(0 i 2((70) FEENI(3) 5 2e30 1 9y2
o = g S — o] ; 28
0 (ﬂ%)z =) o ( 0) (28)
5 9N\ 2 9\ 2 . :
0 (.,‘IDOZZO'2 Jo 0 3031{23
p = Q| ————— 1'=1"— : = ;
o vt ( ksT ) { (o A1 ey
arrTa? tibotes il (03/0%)’ (30)
o® 2T 1-(2/3) (0t /02)
. (31)

0@ 2-(4/3) (03 0%

where o , o2 and 0§ are zero-point contributions to o) , 0* and o', respectively.

In the above description, besides the Morse potential parameters are given, to calcu-
late the thermodynamic parameters o) , o2 , o), ar and the relations (31, 32) we have
to calculate only the Debye-Waller factors o2. So far, calculating or, measuring o one can
predict the other cumulants, thus reducing the calculations and measurements.

IV HIGH-AND LOW TEMPERATURE LIMITS

The above derived formulas are valid for all temperatures, butitis useful to consider
their high-temperature (T limit, where the classical approach is applicable, and low-
temperature (LT") limit, where the quantum theory must be used.

In the HT limit we use the approximation z = 1 — hwg/kgT to simplify the
expressions of thermodynamic parameters. In the LT limit 2 — 0, so that we can neglect
22 and higher powers. The results of these approximations are presented in Table 2.

All the above results reflect the proportionality to k3 of o{¥ , ¢® and o, so that
these values characterize the anharmonic effects. Note that oV , 0% , 0® contain zero-
point contributions, oy approaches the constant value . at high temperatures but vanishes
exponentially with 0 /T at low temperatures. :

[\
=
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Table 2 Expressions of o o2, o® qr and their relations in low-temperature and high-
temperature limits

Value T—>0 T — o0
) o’ (1+22) 3¢,k T/ c;iDo
o’ oo(1+22) k,T/c,Da’
o o (1+122) 6¢,(k,T)*/ c;D%a’
oy : a’z(lnz)® (1+2z) i
o 1To? /6® -~ 3zln(1/z) -0 12
cVo?/c® 3(1+22)* /2(1+122) —3/2 172

T

V. DISCUSSION AND CONCLUSIONS

Developing further the anharmonic correlated Einstein model [4] we derived a gen-
eral theory for calculation of thermal expansion and cumulants in X AF'S theory includ-
ing anharmonic contributions. The expressions are valid for any temperature and different
structures seperated by our new structural parameters . The results for fcc and bee struc-
ture published before [8, 9], and for s.c. structure obtained in this work become special
cases of present procedure when we put the magnitudes of ¢y, ¢a, c3 from Table 1 into the
above obtained expressions.

- With the discovery that the X AF'S spectra provide the number of atoms and the ra-
dius of each shell, the X AF'S spectroscopy becomes a powerful structural analysis tech-
nique, but the problem remained to solve is the distribution of these atoms. The factors
¢y, ¢z and c3 introduced in present work contain the angle between the bond connecting ab-
sorber with each atom and the bond between absorber and backscatterer That is why. they

can provide the atomic distribution and hence discovered as new structural parameters. -

Knowing structure of the crystals like cubic crystals, i. e., the magnitudes of ¢y,¢9,C3
from Table 1 we can calculate the cumulants and then the X AF'S spectra according to
Eq.(1). But for structure unknown substances we can extract the atomic number and the
radius of each shell from the measured X AF'S spectra, as well as, extract the factors
c1, ¢, 3 according to our theory from the measured cumulants like Debye-Waller factor
to get information about atomic distribution or structure.

Our developed expressions for thermal expansion and X AF'S cumulants contain
the information on effective spring constant, correlated Einstein temperature, Einstein fre-
quency, Morse potential parameters, and describe their temperature dependence involving
the results of quantum theory and classical limit. These behaviours are as follows: at low
temperature o) , 0% , o® , contain zero-point contribution as quantum effects; at high
temperature o(!) , o are proportional to T', and o® is proportional to T as conclusions
of classical approach [1]. The thermal expansion coefficient has the form similar to the
specific heat, thus agreeing with the fundamental of solid state theory.
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and high- Our description of all thermodynamic parameters by Debye-Waller factor is very
convenient, since determination of o2 allows one to predict the other cumulants, thus re-
ducing the numerical calculations and measurements. ,
¢ Anharmonic single-particle potential theory [6] does not give an accurate description
dop of the situation because it ignores the correlated motion of the atoms, the single-bond
spring constant [5] does not take sufficient contribution to atomic vibration. Both they are
g used actually for explanation and extraction of physiscal parameters from the experiment.
Q Present theory avoids the disadvantages of the above procedures as well as the tensive
calculations of the full lattice dynamical approximation [11]. Due to limitation of the
. paper volume the numerical results of cubic crystals according to present theory will be
published elsewhere [12]. They show very good agreement with the experimental results
and several advantages of present theory in comparison with the others.
Note that the relations aprT'o? /a® and o2 /o®) approach the classical expres-
sion of 1/2 at high temperature (see Tab.2). This conclusion not only reflects the results of
classical method but also agrees well with the experimental results [1, 10]. Therefore, both

1 gen- : they are used as a criterion to identify the temperature above which the classical limit is
1élud- applicable and below which quantum theory must be applied. This issue will be discussed
‘erent in our another paper [12]. '
struc- . .
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