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A B S T R A C T

Debye-Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion
coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes of Zn (hcp
crystal) have been calculated and measured. The results have been obtained based on the quantum statistically
derived method using that the calculations and measurements are necessary only for the second cumulants from
which all other XAFS parameters have been provided. The many-body effects included in the present one-
dimensional model are taken into account based on the first shell near neighbor contributions to the vibration
between absorber and backscaterer atoms. Morse potential is assumed to describe the single-pair atomic
interaction included in the anharmonic interatomic effective potential. Numerical results for Zn are found to be
in good agreement with the obtained experimental data which show evident temperature dependence of the
thermodynamic properties, anharmonic effects and structural parameters of the material.

1. Introduction

X-ray Absorption Fine Structure (XAFS) has developed into a
powerful technique for providing information on the local atomic
structure and thermal effects of substances. The formalism for includ-
ing anharmonic effects in XAFS is often based on cumulant expansion
approach [1] from which the anharmonic XAFS function has resulted
as
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where F(k) is the real atomic backscattering amplitude, k and λ are the
wave number and mean free path of photoelectron, respectively, Φ is
the net phase shift, R r= with r being the instantaneous bond length
between absorber and backscatterer atoms, and σ(n) (n = 1, 2, 3, …) are
the cumulants describing Debye-Waller factors (DWFs).

Hence, the cumulants or DWFs are very important for the
anharmonic XAFS where the even cumulants contribute to the
amplitude, the odd ones to the phase of XAFS spectra, and for small
anharmonicities, it is sufficient to keep the third and fourth cumulant

terms [2]. They are crucial to quantitative treatment of XAFS spectra.
Consequently, the lack of the precise DWFs or cumulants has been one
of the biggest limitations to accurate structural determinations (e.g.,
the coordination numbers and the atomic distances) [3] and to specify
the other properties of substances [4–8] from XAFS experiments.
Therefore, investigation of DWFs or cumulants and XAFS is of great
interest.

Many efforts have been made to overcome such limitations by the
theoretical and experimental investigations, for example, see [1–26].
Unfortunately, there is still no simplified method which requires the
calculations or measurements only for some leading quantities, yet
provides all other theoretical and experimental XAFS values describing
the thermodynamic properties, anharmonic effects and structural
parameters of substances.

The purpose of this work is to study temperature dependence of the
theoretical and experimental DWFs presented in terms of cumulant
expansion up to the third order, thermal expansion coefficient, XAFS
spectra and their Fourier transform magnitudes of Zn (hcp crystal)
based on the method derived in this work using that the calculations
and measurements are necessary only for the second cumulants or the
mean square relative displacements (MSRDs) from which all other
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theoretical and experimental XAFS parameters have been provided.
This method has resulted (Section 2) based on the description of the
quantum statistically derived analytical expressions for all the con-
sidered XAFS quantities in terms of second cumulants. The many-body
effects included in the present one-dimensional model have been taken
into account based on the first shell near neighbor contributions to the
vibration between absorber and backscaterer atoms. Morse potential is
assumed to describe the single-pair atomic interaction included in the
anharmonic interatomic effective potential. Numerical results for Zn,
an intensively used in science and technology, (Section 3) are found to
be in good agreement with the experimental values measured at the
Beamline BL8, Synchrotron Light Research Institute (SLRI, Thailand).
They show evident temperature dependence of the thermodynamic
properties, anharmonic effects and structural parameters of the
considered material. The conclusions on the obtained results are
presented in Section 4.

2. Theory

2.1. XAFS cumulants and thermal expansion coefficient of hcp
crystals

In order to include anharmonic effects, the Hamiltonian of system
in the present theory for hcp crystals (Zn) involves the anharmonic
interatomic effective potential expanded up to the third order as

V x k x k x x r r( ) ≈ 1
2

+ , = − ,eff eff eff
2

3
3

0 (2)

where keff is the effective local force constant and k eff3 is the cubic
anharmonic parameter giving an asymmetry of the anharmonic
effective potential, r and r0 are the instantaneous and equilibrium
distances between absorber and backscatterer atoms, respectively.

The values of keff and k eff3 for hcp crystals included in all cumulants
and XAFS expressions are determined based on the first shell near
neighbors contributions approach (FNNCA) which was successfully
applied to bcc crystals [8]. For hcp structure, each atom is bonded to 12
first shell near neighbors so that the anharmonic interatomic effective
potential given by Eq. (2) contains not only the term describing the
vibration between absorber and backscatterer atoms but also the other
ones describing the projections of their pair-interactions with 22 first
shell near neighbors along the bond direction except the absorber and
backscatterer atoms themselves to take into account the many-body
effects in the present theory.

The Morse potential expanded to the third order around its
minimum

V x D e e D α x α x( ) = ( − 2 ) ≈ (−1 + − ),αx αx−2 − 2 2 3 3 (3)

is assumed to describe the single-pair atomic interaction included in
the anharmonic effective potential where α describes the width of the
potential and D is the dissociation energy.

For deriving XAFS cumulants we describe the anharmonic intera-
tomic effective potential given by Eq. (2) in the summation of the
harmonic contribution and a perturbation δ V due to the weak
anharmonicity as
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The derivation of XAFS cumulants for hcp crystals in this work is
based on quantum statistical theory [27] and the parameters of the
anharmonic interatomic effective potentials given by Eqs. (2) and (4),
as well as an averaging procedure using the canonical partition
function Z and statistical density matrix ρ, e.g.,

y
Z

Tr ρ y m= 1 ( ), = 1, 2, 3, ⋯m m
(5)

Atomic vibrations are quantized in terms of phonons, and anhar-
monicity is the result of phonon-phonon interaction, that is why we
express y in terms of the annihilation and creation operators, â and â+,
respectively
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which have the following properties
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as well as use the harmonic oscillator state n as the eigenstate with the
eigenvalue E n ω= ℏn E for n being the phonon number, ignoring the
zero-point energy for convenience.

Due to weak anharmonicity in XAFS, the canonical partition
function in Eq. (5) can be expressed as
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where the correlated Einstein frequency ωE and temperature θE of hcp
crystals are given by
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M is the atomic mass and kB is Boltzmann constant.
Using the above results for the correlated atomic vibration and the

procedure depicted by Eqs. (5)–(9), as well as the first-order thermo-
dynamic perturbation theory [27], the temperature-dependent XAFS
cumulants have been derived.

Based on the procedure depicted by Eq. (5) we derived the even
moment expressing the second cumulant or MSRD
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and the odd moments expressing the first (m = 1) and third (m = 3)
cumulants

∑y
k
Z

e e
E E

n δV y n n y n

m

= −
− ′

( ) ′ ′ ,

= 1, 3,

′m eff

n n

βE βE

n n

m

0 , ′

− −n n

(11)

where the operations expressed by Eqs. (5) and (6) have been applied
to calculate the matrix elements given in Eqs. (10) and (11).

Consequently, the XAFS expressions have resulted for the second
cumulant or MSRD
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for the first cumulant or net thermal expansion
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and for the third cumulant or mean cubic relative displacement
(MCRD)
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Moreover, using the first cumulant given by Eq. (13), the expression
for the thermal expansion coefficient has been derived and given by

N. Van Hung et al. Physica B 521 (2017) 198–203

199



α T
r

da
dT

α
σ T σ

T

α Dα
k r

( ) = 1 =
( ( )) − ( )

,

= 15
4

.

T T

T
B

0
2 2

0
2 2

2

0
3

(15)

In the above obtained expressions, σ σ σ, ,0
(1)

0
2

0
(3) are zero-point

energy contributions to three first XAFS cumulants σ(1)(T), σ2(T),
σ(3)(T), respectively, and αT

0 is the constant value which the thermal
expansion coefficient approaches at high-temperatures.

Note that the second cumulant given by Eq. (12) is harmonic while
the experimental data always include the temperature-dependent
anharmonic effects. That is why we introduce the total second
cumulant or MSRD as

σ T σ T σ T( ) = ( ) + ( ),tot A
2 2 2 (16)

which involves an anharmonic contribution
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derived based on the relative volume change due to thermal expansion
and described also in terms of second cumulant.

Hence, the above derived expressions for the first, second cumu-
lants and thermal expansion coefficient σ(1), σ(3) and αT, respectively,
are described in terms of second cumulant σ2 or MSRD. Moreover, the
total second cumulant given by Eqs. (16)–(18) including anharmonic
effects is presented also in terms of second cumulant. This description
is useful to create the present method based on that the calculations
and measurements are necessary only for the second cumulants from
which the first, third cumulants, thermal expansion coefficient and
other XAFS parameters can be provided.

2.2. Anharmonic XAFS based on cumulant expansion

Further, we develop the XAFS function given by Eq. (1) into an
analytical form explicitly including the above obtained cumulants for
the temperature-dependent K-edge anharmonic XAFS spectra as
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which contains the anharmonic contribution to amplitude described by
an factor

F k T k σ T( , ) = exp[−2 ( )],A A
2 2 (20)

causing the anharmonic attenuation and the anharmonic contribution
to phase
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causing the anharmonic phase shift of XAFS spectra.
In the anharmonic XAFS function Eq. (19) S0

2 is the square of the
many body overlap term, Nj is the atomic number of each shell, the

second cumulant σ2 and its anharmonic contribution σA
2 are calculated

by Eqs. (12) and (17), respectively, the mean free path λ is defined by
the imaginary part of the complex photoelectron momentum
p k i λ= + / , and the sum is over all considered atomic shells.
Moreover, all parameters of this function can be obtained from the
second cumulant or MSRD, and this function will return to the
harmonic case calculated by the well-known FEFF code [28] if the
anharmonic contributions to amplitude FA(k,T) and to phase ФA(k,T)
are excluded. Inversely, the FEFF code can also be modified by
including these anharmonic contributions to XAFS amplitude and
phase to calculate the anharmonic XAFS spectra and their Fourier
transform magnitudes. It is the evident advantage of the present
method which will be applied to the numerical calculations and to
the extractions of experimental XAFS parameters for Zn presented in
Section 3.

3. Experimental and numerical results and discussions

3.1. Experimental

The measurements of the second cumulant, XAFS spectra and their
Fourier transform magnitudes of Zn at 300 K, 400 K, 500 K and 600 K
have been performed at the Beamline BL8, SLRI (Thailand). It is the
routinely operated for X-ray absorption spectroscopy (XAS) in an immedi-
ate photon energy range (1.25–10 keV). The experimental set-up conve-
niently facilitates XAS measurements in transmission and fluorescence-
yield modes at several K-edges of elements ranging from Magnesium to
Zinc [29]. The experimental values of the first, third cumulants, thermal
expansion coefficients and some other XAFS parameters of Zn at 300 K,
400 K, 500 K and 600 K have been extracted from the measured values of
the second cumulant using the present method based on the description of
these quantities in terms of second cumulant presented in Section 2.1. The
obtained experimental results will be presented in Section 3.2 compared to
the theoretical results.

Fig. 1. Temperature dependence of (a) first cumulant σ(1)(T) and (b) total and harmonic second cumulants σ T( )tot
2 and σ2(T), respectively, of Zn calculated using the present theory

compared to the experimental values at 300 K, 400 K, 500 K and 600 K.
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3.2. Numerical calculation results compared to experiment and
discussions

Now the expressions derived in the previous Section 2 are applied
to numerical calculations for Zn using its Morse potential parameters
[30] D = 0.1700 eV, α = 1.7054 Å−1 which were obtained using
experimental values for the energy of sublimation, the compressibility,
and the lattice constant.

3.2.1. XAFS cumulants and thermal expansion coefficient
Fig. 1 illustrates good agreement of (a) first cumulant σ(1)(T) and

(b) total and harmonic second cumulants σ T( )tot
2 , σ2(T), respectively, of

Zn calculated using the present theory with the experimental values at
300 K, 400 K, 500 K, and 600 K. Here, σ T( )tot

2 is a little different from
σ2(T) at temperatures greater than the room temperature due to the
temperature-dependent anharmonic contributions. Note that using
this first cumulant we can obtain temperature dependence of the first
shell near neighbor distance based on the expression R(T) = R(0) +
σ(1)(T).

Temperature dependence of third cumulant σ(3)(T) (Fig. 2a) and
thermal expansion coefficient αT(T) (Fig. 2b) of Zn calculated using the
present theory agrees well with the experimental values at 300 K,
400 K, 500 K and 600 K. Here, the theoretical and experimental
thermal expansion coefficients of Zn approach the constant values at
high-temperatures as it was obtained for the other crystal structures
[11,22–26].

Fig. 3 illustrate good agreement of temperature dependence of (a)
anharmonic contributions σ T( )A

2 to the second cumulant or MSRD and (b)
anharmonic factor βA(T) of Zn calculated using the present theory with
their experimental values at 300 K, 400 K, 500 K and 600 K where βA(T)
characterizes percentage of the anharmonic contributions at each tempera-
ture. These values are normally difficult to be directly measured, but using
the present method they have been calculated and extracted from the
calculated and measured second cumulants.

The cumulant ratios σ(1)σ2/σ(3) and αTTσ
2/σ(3) are often considered as

the standards for cumulant studies [6–9,22,25,26] and to identify the
temperature above which the classical limit is applicable [22]. Fig. 4 show
good agreement of temperature dependence of (a) σ(1)σ2/σ(3) and (b)
αTTσ

2/σ(3) of Zn calculated using the present theory with the experimental
values at 300 K, 400 K, 500 K and 600 K. The theoretical and experimental
results of these ratios show that above the Einstein temperature (θE =
206 K calculated using the present theory for Zn) they approach the
classical value [7,9] of 1/2 so that the classical limit is applicable.

Table 1 illustrates good agreement of the values of three first XAFS
cumulants and thermal expansion coefficients of Zn calculated using
the present theory at 300 K, 400 K, 500 K and 600 K with their
experimental values.

The second cumulant describing MSRD is primary a harmonic effect
plus small anharmonic contributions which appear only at high-tempera-
tures. But the first cumulant describing the net thermal expansion or lattice
disorder, the third cumulant or MCRD describing the asymmetry of pair
atomic distribution function and the thermal expansion coefficient are

Fig. 2. Temperature dependence of (a) third cumulant σ(3)(T) and (b) thermal expansion coefficient αT(T) of Zn calculated using the present theory compared to the experimental values
at 300 K, 400 K, 500 K and 600 K.

Fig. 3. Temperature dependence of (a) anharmonic contribution σ T( )A
2 to second cumulant or MSRD and (b) anharmonic factor βA(T) of Zn calculated using the present theory

compared to the experimental values at 300 K, 400 K, 500 K and 600 K.
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entirely anharmonic effects because they appear due to including the cubic
anharmonic effective potential parameter.

3.2.2. XAFS spectra and their Fourier transform magnitudes
Based on the present derived method, the FEFF code [28] has been

modified by including the amharmonic contributions to XAFS amplitude
and phase described by the above obtained cumulants to calculate XAFS
spectra at 300 K, 400 K, 500 K, 600 K of Zn and their Fourier transform
magnitudes. Fig. 5 illustrate the anharmonic (a) attenuation factor FA(k,T)
and (b) phase shift ФA(k,T) of XAFS of Zn at 300 K, 400 K, 500 K, and
600 K calculated using the present theory including the above obtained
cumulants. These values increase showing the increase of anharmonicity as
k-value and temperature T increase. Using these values of FA(k,T) and
ФA(k,T), the anharmonic XAFS spectra of Zn at 300 K, 400 K, 500 K and
600 K have been calculated and presented in Fig. 6a compared to the
measured results presented in Fig. 6b. The anharmonic amplitude

attenuation and phase shift are evidently shown in both theoretical and
experimental XAFS spectra. These theoretical and experimental anharmo-
nic XAFS spectra have been Fourier transformed and their Fourier
transform magnitudes are presented in Fig. 7. They show good agreement
between the theoretical and experimental results, as well as the decrease of
the peak heights and their shifts to the left as the temperature T increases.

Note that the anharmonic XAFS spectra of Zn at 300 K, 400 K, 500 K
and 600 K and their Fourier transform magnitudes have been calculated
based on including the anharmonic contributions to XAFS amplitude and
phase using the cumulants obtained from the second cumulants or MSRDs.
The results are found to be in good agreement with the measured data.
Moreover, using the present theory and the measured second cumulants of
Zn at 300 K, 400 K, 500 K, 600 K we have reproduced all the considered
experimental values including XAFS spectra and their Fourier transform
magnitudes. The obtained results agree well with the experimental values at
these temperatures.

Fig. 4. Temperature dependence of cumulant ratios (a) σ(1)σ2 /σ(3) and (b) αTTσ
2/σ(3) of Zn calculated using the present theory compared to the experimental values at 300 K, 400 K,

500 K and 600 K.

Table 1
Comparison of the values of three first XAFS cumulants and thermal expansion coefficients of Zn calculated using the present theory with their experimental values at 300 K, 400 K,
500 K and 600 K.

T(K) σ (1) (Ǻ) σ (1) (Ǻ) σ2 (Ǻ2) σ2 (Ǻ2) σ2 (Ǻ2) σ (3) (Ǻ3) σ (3) (Ǻ3) αT (10−5/K) αT (10−5/K)
Theory Expt. Total Harm. Expt. Theory Expt. Theory Expt.

300 0.0139 0.0143 0.0110 0.0109 0.0113 0.0003 0.0003 1.555 1.582
400 0.0182 0.0189 0.0146 0.0143 0.0149 0.0005 0.0006 1.582 1.618
500 0.0226 0.0232 0.0182 0.0177 0.0185 0.0008 0.0009 1.595 1.599
600 0.0270 0.0279 0.0219 0.0211 0.0223 0.0011 0.0012 1.602 1.630

Fig. 5. The wave number k-dependence of the anharmonic (a) attenuation factor FA(k,T) and (b) phase shift ФA(k,T) of XAFS of Zn at 300 K, 400 K, 500 K, and 600 K calculated using
the present theory.
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4. Conclusions

In this work, temperature dependence of the theoretical and experi-
mental DWFs presented in terms of cumulant expansion up to the third
order, thermal expansion coefficient, XAFS spectra and their Fourier
transform magnitudes of Zn has been studied. The obtained quantities
contribute to the valuation of the thermodynamic properties of Zn, as well
as to including the anharmonic effects in XAFS and their Fourier transform
magnitudes providing the accurate structural determination of the con-
sidered crystal. This method has been successfully used for Zn and it can
also be applied to studying XAFS quantities of other hcp crystals.

The most advantageous development in this work is the quantum
statistically derived method based on which all the considered theore-
tical and experimental XAFS quantities including those which are
difficult to be directly measured have been obtained and extracted from
the calculated and measured second cumulant or MSRD. Therefore, it
has significantly simplified and reduced the XAFS calculations and
measurements, yet provides all necessary theoretical and experimental
XAFS data.

The obtained temperature-dependent theoretical and experimental
XAFS quantities have been in detail analyzed and valuated. They
include the evident anharmonic effects and satisfy all their funda-
mental properties, as well as approach the classical values at high-
temperatures and contain zero-point energy contributions at low-
temperatures, a quantum effect.

The good agreement between the theoretical and experimental
XAFS quantities of Zn, as well as their good description of temperature
dependence of the thermodynamic properties and anharmonic effects
in XAFS of Zn, illustrate the simplicity and efficiency of the present
method in XAFS data analysis and in materials studies.
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Fig. 6. (a) Theoretical and (b) experimental XAFS spectra of Zn at 300 K, 400 K, 500 K, 600 K.

Fig. 7. Comparison of Fourier transform magnitudes of XAFS spectra of Zn at 300 K,
400 K, 500 K, and 600 K calculated using the present theory with their experimental
results.
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