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Theory of Anharmonic Extended X-ray Absorption Fine Structure
in Single-shell Model

Nyuyén Ven Hing and Nguyén Bd Piic
Department of Physics. Hanoi University of Science. 334 Nguyen - Trai, Hanoi.

Abstract: A nev theory of the Extended X-ray Absorption Fine Structure (EXAFS) including
citharmonic contributions has been developed based on the cumulant expansion and the single-shell
model. Analytical expressions for the anharmonic contributions to the amplitude and to the phase of
the EXAFS have been derived. The EXAFS functiow contains  anharmonic  effects  ar high
temperature and approuches the one of the  harmonic model at low temperature. Numerical results
Jor Cu agree well with  the experimental values. Peaks in the Fourier transform of our calculated
cnnharmonic EXAFS  and of  the experimental one at 295K and 700K are shifted significcantly
compared 1o the harmonic model results.

I. Introduction

The harmonic approximation in EXAFS calculations works very well'" at low temperatures
because the anharmonic contributions to the atomic thermal vibrations can be neglected. But at
different high temperatures the EXAFS spectra provide apparently different structural
information”” due to the anharmonicity. and these effects need to be evaluated. The formalism
for including anharmonic effects in EXAFS is often based on the cumulant expansion
approach.™* and the anharmonic effects in EXAFS have been valuated by the ratio methods.™™"
Another way is the direct calculation and analysis of EXAFS and its parameters including
anharmonic effects at any temperature.m'm Limitation of this procedure is that the expressions
for the anharmonic factor and for the phase change of the EXAFS due to anharmonicity contain
a fitting parameter. and the cumulants were obtained by an extrapolation procedure from the
experimental data. . ' :

The purpose of this work is to develop an anharmonic- theory of EXAFS by deriving
analytical expressions for the anharmonic factor determining the anharmonic contributions to
the amplitude and for the anharmonic contributions to the phase of the EXAFS. which overcome
the limitations of the previous ones.'"'?) To calculate the cumulants contained in the derived
expressions the quantum statistical approach with the anharmonic correlated Einstein model'
has been used in which the parameters of the anharmonic effective potential are based on
Morse potential that characterizes the interaction between each pair of atoms. and the
anharmonicity is described by the cumulants obtained by the calculation of the phonon-phonon
interaction process.' ™" ‘Numerical results for Cu are discussed and compared (o the
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experimental data.

I1. Formalism

According to the cumulant expansion approach the EXAFS oscillation function is given by
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where F(k) is the real atomic backscattering amplitude. @ is the net phase shift. & and 4 are

) are the cumulants. They appear due to the thermal average of the function exp(i24r) in




which the asymmetric terms are expanded in a Tayier series about R —-\I,‘: with 7 as the
instantaneous bond length between absorbing and backscattering atoms and then are rewritten in
terms of cumulants,

This EXAFS oscillation function including anharmonic eftects contains the Debye-Waller
factor ¢~ -7 accounting for the effects of the thermal vibrations of atoms. Based on the
analysis™'*! of cumulant expansion we obtain o
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where ¢! is the first cumulant or net thermal expansion: (S 15 the 5ewnd cumulant which is

equal to the mean square relative displacement (MSRD)G*: " and o™ are the third and the

fourth cumulants, respectively. The higher cumulants are not included due to their small

contributions.™ " |

To consider anharmonic contributions to the MSRD we used an argument analogous to the
one'™ for its change due to the temperature increase and obtain
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where yi is Gruneisen parameter. and AV/V is the relative volume change due to thermal
N P Dol . . I _—_
expansion. 7, is a very low temperature so that o~ (7,) is a harmonic MSRD. This result agrees
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with the one in another consideration™ on the change of the MSRD. Deriving further Eq. (3) we
obtain the total MSRD
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It is clear that the MSRD approaches the very small value of zero-point contribution o,
when the temperature approaches zero. i
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Hence. it can be seen in Eq. (4) that the total MSRD ¢ (T') at a given temperature T consists of
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the harmonic contribution oy (7') and the anharmonic oneo (7)
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This separation will help us to determine the anharmonic contribution to the EXAFS amp[' tude.

[n the present approach we apply the anharmonic correlated Einstein model™ o the
calculation of the cumulants where the effective interaction potential is given by
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Here v is the deviation of instantancous bond length between two atoms from equilibrium. R
is the bond unit vector. k, is effective spring constant. and &, the cubic parameter giving an
asymmetry in the pair distribution function. The correlated Einstein model may be defined as o
oscillation of a pair of atoms with masses A/, and 1/, (e.g.. absorber and backscatterer) in o
viven system. Their oscillation is influenced by their neighbors given by the last term in the left
side of Eq. (6). where the sum 7 is over absorber (i = 1) and backscatterer (/ = 2 ). and the sum
/is over all their near neighbors. excluding the absorber and backscatterer themselves whose
contributions are described by the term |°(x).

To model the asymmetry we replaced the harmoiic potential by an anharmonic one. ¢. .. a
Morse potential with parameters D and ¢ charactrizing the intraction of each pair of atoms,

W
b

R



Applving it to the effective potential of the system of Eq. (6) (ignoring the overall constant)
we obtain '
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where k, is the Boltzmann constant:w, .0, are the correlated Einstein frequency and
temperature: the structural parameter S = 5 for fee and 5 =11/3 for bee structure.

Using the above results in first-order thermodynamic perturbation theory'*!
consideration of the phonon-phonon interaction for taking into account the anharmonicity we
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obtain the cumulants
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where o' o) . ob are the zero-point contributions to the first. second and third cumulant.

respectively.
Based on the derived cumulants and correlated Einstein frequency we calculated the relative
volume change due to thermal expansion and Griineisen parameter. By substituting the obtained

results in Eq. (3) we derived an anharmonic factor
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This factor is proportiotal to the temperature and inversely proportional to the shell radius.
thus reflecting a similar property of anharmonicity oblained in an experimental catalysis

research” it R is considered as particle radius.

The anharmonic contribution-to the EXAFS phase at a given temperature is the difference
between the total phase and the one of the harmonic EXAFS. On the left side of Eq. (2) the A
and the 3™ terms contribute to the EXAFS amplitude. Only the | “ the 4" terms and the
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anharmonic contribution to the MSRD in the 3" term are anharmonic contributions to the phase.
Therefore. from this equation we obtain ‘ ' ‘
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The 4" cumulant is often very small. 'This is why we obtained from Egs. (1. 2). taking
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into account the above results. the temperature depindent K-edge EXAFS tunction including

anharmonic effects as
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which by including Eq. (3) 1s resulting in
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where S is the square of the many body overlap term. ' is the atomic number of each shell.

the remaining parameters were defined above. the mean free path 4 is defined by the imaginary
part of the complex photoelectron momentum p = & +i7 4 . and the sum s over all atomic shells.
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[t1s obvious that in Eq. (14) o (/) ‘determines the anharmonic contribution to the amplitude

characterizing the attenuation, and @ (k.7) is the anharmonic contribution to the phase

characterizing the phase shift of EXAFS spectra. They are calculated by Eq. (5) and Eq. (12). ’

respectively. Their values characterize the temperature dependence of the anharmonicity. but the I

anharmonicity is described by the cumulants given by Egs. (8 - 10) obtained by consideration ol

the phonon-phonon interaction process. That is why they also characterize the temperature |
dependence of the phonon-phonon interaction in the EXAFS. At low temperatures these
anharmonic values approach zero and the EXAFS function Eq. (14) is reduced to the one of the

harmonic model.

IXI. Discussion of numerical results and comparison with experiment

We applied the expressions derived in the previous section to numerical calculations for fee
. ; Iy S .
crystal Cu. The Morse potential parameters'” D. o calculated effective spring constant ko
correlated Einstein frequency @, and temperature &, are written in Table 1. where our

Table 1. Morse potential purameters D.a: calculated effective spring constentk ,,

correlated Einsiein frequency @, and tenperature 6, of Cu.

Crystal

D(
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) (x 10" H:)

0,(K)

Cu

el) o (A7)
0.3429

50.7478

3.0889 2

33.9494
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calculated value @, ~ 236 K for Cu agrees well with the measured one of 232 (5) K. J Figure |

shows the temperature dependence of our calculated anharmonic factor £(77) for Cu. It has the
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values 0.28 at 300 K and 0.84 at 700 K which agree well with those obtained by the other
Figure 2 shows the temperature dependence of

studies.
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amplitude of Cu. [t is small at low temperatures and then increases strongly at high temperatures

This result also shows that below 100 K no anharmonic effect in the EXAFS of Cu is expected.
i . o . 2y f o 317 - £

[t agrees well with our previous predlcuon” "and with the experimental results.™" Therefore.

0“3, (T) also makes it possible to determine the temperature above which the anharmonic effects
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or the phonon-phonon interaction are visible. For Cu this temperature is about 100 K. Figure 3
illustrates the temperature dependence of our calculated total MSRD o * (7") of Cu compared to
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Figure 3: Temperature dependence of the caleulated total
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its harmonic one o (T) and to the experiment.'” "™ The’ calculated values of the total
anharmonic MSRD agree well with the measured results at 295 K" and 700 K" Figure 4
illustrates the temperature and k-dependence of our calculated anharmonic contribuiion
® ,(k.T)to the EXAFS phase of Cu for the first shell for single scattering. These contributions
are especially large at high temperatures and high k-values. Figure 5 shows the signiticant
difference between the EXAFS spectrum yk'of Cu at 295K and 700K calculated by the
harmonic FEFF code' and the one including the anharmonic contributions. The
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Fioure 3. Comparison of the hurmonic ENAES. Figure 60 Comparison of the Fourier transtorm
o) Cuwith those calculated by our magnitudes of the ENAFS specira fiom
anhearmaonic theory at 293K and 00K, Figure 3.

anharmonic spectrum is shifted to the left and attenuated especially at high k-values. Fourier
transform magnitudes over the range 2.3 A <k <13 A7 of these EXAFS spectra of Cu are
illustrated in Figure 6. Our calculated EXAFS Fourier transtorm magnitudes ol Cu including
anharmonic contributions for the first shell agree well with the measured ones. " They are
shifted to smaller distances by 0.03 A at 295 K and by 0.07 A at 700 K in comparison to the
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harmonic model results. as well as vielding apparently different structural information at the
different high temperatures.

IV. Conclusions
We have developed an anharmonic theory of EXAFS containing the derived expressions lor
the anharmonic contributions to its amplitude determined by a new derived anharmonic Factor
and for the anharmonic contributions to its phase based on the cumulant expansion and the

* single-shell model. The total MSRD is the sum of the harmonic and the anharmonic ones.

Advantage of the present procedure is that these anharmonic contributions can be calculated
and analyzed for any temperature and for any k-value. Moreover. based on the anharmonic
contribution to the EXAFS amplitude we also can predict the temperature above which the
anharmonicity or the phonon-phonon interaction in the EXAFS is visible. a

The anharmonic effects in the present model are obtained as corrections which can be added
{0 a harmonic model like the well-known FEFF code'’ to modify it into the anharmonic one. Our
expressions derived for the EXAFS and its parameters include anharmonic contributions at high
temperatures and are approaching those of the harmonic model at low temperatures. They can be
calculated ab initio as they have been tested for the case of Cu.

The good agreement between the calculated results and experiment shows the advantage
and efficiency of this new procedure for the analysis of anharmonic contributions to the
EXAFS.
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