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Abstract. From Hamiltonian of the confined electron - confined acoustic phonon system, we
have successfully built quantum kinetic equation for the distribution function of electrons under the
influence of the electromagnetic wave (EMW) in quantum well with parabolic potential (QWPP).
We have carefully calculated and obtained analytic expression for Ettingshausen coefficient (EC). The
expression shows that EC depends in a complicated way on temperature, magnetic field, characteristic
quantities of EMW and m - quantum number which specific the confined phonon. These dependencies
are clearly displayed when we apply numberial method for GaAs/GaAsAl quantum well (QW). Espe-
cially, if the detention index of the phonon is set to zero, we will achieve results which are suitable for
published studies about thermal-electromagnetic effect in the same QW without phonon confinement.
Finally, the results we get are new and not found in previous researches.
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1 Introduction

The quantization by reducing in size leads to transformation of both wave func-
tion and energy spectrum of the electron. So, the low-dimensional semiconductor sys-
tems have not only changed physical properties but also appeared new effects. Among
them, we have to mention a magneto – thermoelectric effect that called Ettingshausen
effect. That is a thermoelectric phenomena that affects the current in conductor in the
presence of magnetic field [1]. This effect has studied in various semiconductor struc-
tures [2][8], including two-dimensional systems such as QW [3]. However, those studies
have only interested in the confinement of the electrons while the phonons are free.
Furthermore, several examinations have shown that the confined phonon impact on
the feature in the case of quantum effects. How the confined acoustic phonon influence
the Ettingshausen effect in QWPP is still a unanswered question.

The starting point is the quantum kinetic equation for electrons [2], in this work,
we have considered the presence of EWM. Then, we have calculated and obtained the
EC expression in QWPP. In the process of transformation, we always count on the
confinement of the acoustic phonon and existence of temperature gradient.

Components of the article are as follows: In section 2, we get the analytic equa-
tion of the EC based on computation related to the Hamiltonian of electron. We give
the result of numberial calculation and discussion in section 3. Final section contains
conclusions.
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2 The Ettingshausen constant in the quantum well

with parabolic potential under the influence of

the confined acoustic phonons

We consider a QWPP: V(z) = mew
2
z
z2

2
(wz is detention frequency characteris-

tic QWPP). There exists an electromagnetic field with
−→
B be along the z-axis (

−→
B =

(0, 0, B)) and
−→
E 1 be along the x-axis (

−→
E 1 = (E1, 0, 0)). In this case, movement of

electron is limited to Oz. They can only move freely in the xOy plane with cyclotron
frequency wc = eB

me
and imply velocity vd = E1

B
. Energy of an electron is quantized and

receives intermittent values:

εN,n (−→py) =

(
N +

1

2

)
~wc +

(
n+

1

2

)
~wz +

mev
2
d

2
− ~vd−→py (2.1)

Here: −→py is the wave vector of electron in the y-direction. When QWPP is subjected to

a laser radiation
−→
E0(t) =

−→
E0 sin (Ωt), Hamiltonian of the confined electron - confined

acoustic phonon system can be expressed as:

H =
∑

N,n,−→py
εN,n

(−→py − e
~c
−→
A (t)

)
a+
N,n,−→pyaN,n,−→py +

∑
m,−→q⊥

~wm,−→q⊥b
+
m,−→q⊥

bm,−→q⊥

+
∑

N,n,−→py

∑
N ′,n′

∑
m,−→q⊥

DN,N ′,n,n′,m (−→q⊥)a+
N ′,n′,−→py+−→qyaN,n,−→py

(
b+
m,−−→q⊥

+ bm,−→q⊥

) (2.2)

Where: a+
N ′,n′,−→py , aN,n,−→py (b+

m,−→q⊥
, bm,−→q⊥) are the creation and annihilation operators of

electron (phonon)respectively;
−→
A (t) is the vector potential of laser field; ~wm,−→q⊥ is

the energy of an acoustic phonon with the wave vector −→q⊥ = −→qx + −→qy ; m is the de-

tention index of the phonon. |DN,N ′,n,n′,m (−→q⊥)|2 = |Cm (−→q⊥)|2
∣∣Imn,n′ (±−→qz )

∣∣2|JN,N ′ (u)|2

with |Cm (−→q⊥)|2 =
~ξ2
√
q2⊥+q2z

2ρvsV0
is the confined electron - confined acoustic phonon inter-

action constant (ξ, ρ, vs are the deformation potential constant, the mass density and
the sound velocity respectively);Imn,n′ (±

−→qz ) is the electron form factor; |JN,N ′ (u)|2 =
Nmin!
Nmax!

e−uuNmax−Nmin
[
LNmax−Nmin
N min (u)

]2
with LN

′−N
N (u) is the associated Laguerre poly-

nomial.
The quantum kinetic equation of average number of electron is:

i~
∂fN,n,−→py (t)

∂t
=
〈[
a+
N,n,−→pyaN,n,

−→py , H
]〉

t
(2.3)

with: fN,n,−→py (t) = a+
N,n,−→pyaN,n,

−→qy . Using (2.2) for (2.3) then we performed transforma-
tions of operator algebra and obtained:

∂fN,n,−→py
∂t

+
(
e
−→
E1 + ~wc

[−→py ,−→h ]) ∂fN,n,−→py
~∂−→py =

= 2π
~

∑
N ′,n′,m,−→q⊥

|DN,N ′,n,n′,m (−→q⊥)|2
∑
l=0

J2
l

(
λ
Ω

)
∗

∗
{[
fN ′,n′,−→py+−→qy

(
Nm,−→q⊥ + 1

)
− fN,n,−→pyNm,−→q⊥

]
∗

∗δ
(
εN ′,n′ (

−→py +−→qy )− εN,n (−→py)− ~wm,−→q⊥ + ~Ωl
)

+
+
[
fN ′,n′,−→py−−→qyNm,−→q⊥ − fN,n,−→py

(
Nm,−→q⊥ + 1

)]
∗

∗δ
(
εN ′,n′ (

−→py +−→qy )− εN,n (−→py)− ~wm,−→q⊥ + ~Ωl
)}

(2.4)
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In which, Nm,−→q⊥ = b+
m,−→q⊥

bm,−→q⊥ is the equilibrium distribution function of the phonon;

λ = eE0
−→qy

meΩ
;
−→
h =

−→
H
H

is unit vector in the direction of magnetic field. The energy of
acoustic phonon is small and be ignored. For simplicity, we limit to case of l = 0,±1
and get close: J2

0

(
λ
Ω

)
= 1− 1

2

(
λ
Ω

)2
; J2
±1 = 1

4

(
λ
Ω

)2
. We multiply both sides by (2.4) with

e
m
−→pyδ (ε− εN,n (−→py)), then taking sum of N, n, and −→py . We get following expression:

−→
G (ε)

τ (ε)
+ wc

[−→
h ,
−→
G (ε)

]
=
−→
P (ε) +

−→
Z (ε) (2.5)

In the above expression, we use symbols to replace complex equations.
[−→
h ,
−→
G (ε)

]
is

directional multiplication of
−→
h and

−→
G (ε).

−→
P (ε) = − e

me

∑
N,n,

−→
ky

−→
ky
−→
F
∂f

N,n,
−→
ky

∂
−→
ky

δ
(
ε− εN,n

(−→
ky

))
(2.6)

and

−→
Z (ε) = 4πe

me~
∑

N ′,n′,m,−→q⊥

∑
N,n,−→py

|DN,N ′,n,n′,m (−→q⊥)|2Nm,−→q⊥
−→py
(
fN ′,n′,−→py+−→qy − fN,n,−→py

)
∗δ (ε− εN,n (−→py))

{[
1− 1

2

(
λ
Ω

)2
]
δ (εN ′,n′ (

−→py +−→qy )− εN,n (−→py))

+1
4

(
λ
Ω

)2
δ (εN ′,n′ (

−→py +−→qy )− εN,n (−→py) + ~Ω)

+1
4

(
λ
Ω

)2
δ (εN ′,n′ (

−→py +−→qy )− εN,n (−→py)− ~Ω)
} (2.7)

with τ is the momentum relaxation time and
−→
F = e

−→
E1 − ∇εF − ε−εF

T
∇T (εF is the

fermi energy of electron).
By solving the equation (2.5), we find out expression of individual current den-

sity:

~G (ε) = τ (ε) [1 + w2
cτ

2 (ε)]
−1
{[

~P (ε) + ~Z (ε)
]

−wcτ (ε)
([
~h, ~P (ε)

]
+
[
~h, ~Z (ε)

])
+ w2

cτ (ε)
[
~P (ε)~h+ ~Z (ε)~h

]
~h
} (2.8)

The total current density
−→
J and the thermal flux density

−→
Q are given by:

−→
J =

∞∫
0

−→
G (ε) dε (2.9)

and

−→
Q =

1

e

∞∫
0

(ε− εF )
−→
G (ε) dε (2.10)

In low temperature conditions, the electron gas in QW is completely degenerate.
The equilibrium distribution function of electron is of the form:f 0

N,n,−→py = θ
(
εF − εN,n,−→py

)
.

The distribution function of electron is found in linear approximation by E1:

fN,n,−→py (ε) = f 0
N,n,−→py − ~−→py ~χ (ε (−→py))

∂f 0
N,n,−→py

∂ε (−→py)
(2.11)
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Here:

−→χ (ε) =
τ (ε)

me [1 + w2
cτ

2 (ε)]

{−→
F (ε)− wcτ (ε)

[−→
h ,
−→
F (ε)

]
+ w2

cτ
2 (ε)

(−→
h ,
(−→
h ,
−→
F (ε)

))}
(2.12)

From expressions of the total current density and the thermal flux density achieved,
comparing it to the writing: Ji = σimE1n + βim∇T and Qi = µimE1n + ϕim∇T , we
obtain analytical expression of tensors: σim, βim, µim, ϕim. Specifically:

σim = ζ eτ(εF )
1+w2

cτ
2(εF )

[δij − wcτ (εF )λijkhk + w2
cτ

2 (εF )hihj]

+ (b1 + b2) e
me

τ2(εF )

[1+w2
cτ

2(εF )]2
[δij − wcτ (εF )λijkhk + w2

cτ
2 (εF )hihj]

∗ [δ`n − wcτ (εF )λ`mnhn + w2
cτ

2 (εF )hlhm]

+b3
e
me

τ2(εF +~Ω)

[1+w2
cτ

2(εF +~Ω)]2
[δij − wcτ (εF + ~Ω)λijkhk + w2

cτ
2 (εF + ~Ω)hihj]

∗ [δ`n − wcτ (εF + ~Ω)λ`mnhn + w2
cτ

2 (εF + ~Ω)hlhm]

+b4
e
me

τ2(εF−~Ω)

[1+w2
cτ

2(εF−~Ω)]2
[δij − wcτ (εF − ~Ω)λijkhk + w2

cτ
2 (εF − ~Ω)hihj]

∗ [δ`n − wcτ (εF − ~Ω)λ`mnhn + w2
cτ

2 (εF − ~Ω)hlhm]

(2.13)

βim = −b3
~Ω
meT

τ2(εF +~Ω)

[1+w2
cτ

2(εF +~Ω)]2
[δij − wcτ (εF + ~Ω)λijkhk + w2

cτ
2 (εF + ~Ω)hihj]

∗ [δ`n − wcτ (εF + ~Ω)λ`mnhn + w2
cτ

2 (εF + ~Ω)hlhm]

+b4
~Ω
meT

τ2(εF−~Ω)

[1+w2
cτ

2(εF−~Ω)]2
[δij − wcτ (εF − ~Ω)λijkhk + w2

cτ
2 (εF − ~Ω)hihj]

∗ [δ`n − wcτ (εF − ~Ω)λ`mnhn + w2
cτ

2 (εF − ~Ω)hlhm]
(2.14)

µim = b3
~Ω
me

τ2(εF +~Ω)

[1+w2
cτ

2(εF +~Ω)]2
[δij − wcτ (εF + ~Ω)λijkhk + w2

cτ
2 (εF + ~Ω)hihj]

∗ [δ`n − wcτ (εF + ~Ω)λ`mnhn + w2
cτ

2 (εF + ~Ω)h`hm]

−b4
~Ω
me

τ2(εF−~Ω)

[1+w2
cτ

2(εF−~Ω)]2
[δij − wcτ (εF − ~Ω)λijkhk + w2

cτ
2 (εF − ~Ω)hihj]

∗ [δ`n − wcτ (εF + ~Ω)λ`mnhn + w2
cτ

2 (εF + ~Ω)h`hm]

(2.15)

ϕim = −b3
(~Ω)2

emeT
τ2(εF +~Ω)

[1+w2
cτ

2(εF +~Ω)]2
[δij − wcτ (εF + ~Ω)λijkhk + w2

cτ
2 (εF + ~Ω)hihj]

∗ [δ`n − wcτ (εF + ~Ω)λ`mnhn + w2
cτ

2 (εF + ~Ω)h`hm]

−b4
(~Ω)2

emeT
τ2(εF−~Ω)

[1+w2
cτ

2(εF−~Ω)]2
[δij − wcτ (εF − ~Ω)λijkhk + w2

cτ
2 (εF − ~Ω)hihj]

∗ [δ`n − wcτ (εF + ~Ω)λ`mnhn + w2
cτ

2 (εF + ~Ω)h`hm]
(2.16)

Where: δij is the Kronecker delta; λijk is the antisymmetric Levi - Civita tensor.

b1 =
∑
N,N ′

∑
n,n′,m

κ
(
B1

γ

)2

|JN,N ′ (u1)|2; b2 =
∑
N,N ′

∑
n,n′,m

κϑ
2

(
B1

γ

)4

|JN,N ′ (u1)|2

b3 =
∑
N,N ′

∑
n,n′,m

κϑ
4

(
B1−~Ω

γ

)4

|JN,N ′ (u2)|2; b4 =
∑
N,N ′

∑
n,n′,m

κϑ
4

(
B1+~Ω

γ

)4

|JN,N ′ (u3)|2

ζ = eLy

2πmeγ
(εN,n − εF ); ϑ =

e2E2
0

m2
eΩ4 ; γ = ~vd;κ = 2AeLy

me~2βvsV0γ3
∣∣Imn,n′∣∣2 (εN,n − εF )

εN,n =
(
N + 1

2

)
~wc +

(
n+ 1

2

)
~wz +

mev2d
2

;u1 =
a2cB

2
1

γ2
;u2 = a2c(B1−~Ω)2

γ2

u3 = a2c(B1+~Ω)2

γ2
;A = ~ξ2

2ρvs
; β = 1

kBT
;B1 = (N ′ −N) ~wc + (n′ − n) ~wz

The expression of the EC is given by:

EC =
1

H

σxxµxy − σxyµxx
σxx [βxxµxx − σxx (ϕxx −KL)]

(2.17)
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Above expressions show that the EC depends in a complicated way on charac-
teristic quantities of EMW (the amplitude E0 and the frequency Ω), the temperature,
the magnetic field, and especially the m-quantum number being specific to the con-
fined phonon. These dependencies will be clarified in section 3 when we study QWPP
of GaAs/GaAsAl.

3 Numberial results and discussions

To get influence of the confined acoustic phonon on the EC in QWPP in the
presence of EMW in detail, we consider the QWPP of GaAs/GaAsAl with the param-
eters: me = 0.067m0 (m0 is the mass of a free electron), ξ = 13.5eV , ρ = 5.32gcm−1,
vs = 5378ms−1, εF = 50eV , τ (εF ) = 10−12s and Ly = 2nm [3].

Figure 1

Fig.1 describes the dependence of
EC on EMW amplitude in two cases:
with and without confinement of acous-
tic phonon at T = 10K. The graph indi-
cates that: the EC depends clearly on the
EMW in low amplitude domain. The EC
rises fast and linearly to reach the hori-
zontal line in both cases to be considered
in higher amplitude region. We realize that
in the high EMW amplitude condition, the
EC is almost unchanged when the EMW
amplitude increases.

Besides, the EC has negative values when the phonon is free and even confined.
These results are suitable for research about Ettingshausen effect in the same QWPP
but not interested in the confined acoustic phonon [3].

Fig.2 describes the dependence of
EC on the EMW frequency with Ω =
0 ÷ 1014 (Hz). This figure is investigated
in the same conditions as above. As can
be seen from the graph, the EC oscil-
lates when the EMW frequency is less than
1014 (Hz). In this frequency range, both
EC peak and EC peak position tend to
downward. When the EMW frequency in-
creases from 1014 to 1, 8.1014 (Hz), the EC
has the same value in both cases and be
unchanged. If the frequency of the EMW
continues to rise, the EC begins to decrease
fast and reaches smaller values than the

peak in small frequency region.

Figure 2
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Meanwhile, the EC always increases when the EMW frequency increases in the
same frequency domain as in electron - optical phonon interaction. Moreover, in the
case of electron - acoustic phonon scattering, the EC has negative values. This result
is completely opposite to case of electron - optical phonon scattering - the EC has
positive values [4]. Thus, the scattering mechanism not only affects the value but also
the variation of the EC under influence of EMW frequency change.

Figure 3
Figure 4

Both graphs were set in conditions of B = 5T and Ω = 1010Hz. Fig.3 indicates
that the EC decreases as the temperature increases. The value of the EC decreases very
fast in small temperature domain (under 20K). When the temperature increases from
20 to 50 (K), the dependence of the EC in QWPP on the temperature is nearly linear.
In both cases - with and without the confinement of phonon - the EC has negative
values.

The presence of the electromagnetic field also influences on the EC. It is dis-
played clearly in the Fig.4. In the temperature domain investigated, the EC has greater
values within the presence of the electromagnetic field and the confinement of acoustic
phonon. However, the influence of electromagnetic field is weak and almost only causes
change in the magnitude of the EC while temperature increases. Those are similar to
the results obtained in the same QWPP in the case of unconfined acoustic phonon [3].

In the Fig.5, we can see oscillations
of the EC when the magnetic field changes.
The EC fluctuates strongly in region of
magnetic field between 12(T) and 20(T).
Both blue line (with the confinement of
phonons) and red line (without the con-
finement of phonons) oscillate and reaches
resonant point. It can be clearly seen that
peaks of the blue line are taller than peaks
of the red line at the same magnetic field
point.

Figure 5
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In both cases, the EC curve for the change of magnetic field has the same
number of resonance peaks but the magnitude is different. It can be explained as
follows: when acoustic phonons are confined, their wave vector are quantized. Both
phonon’s energy and interaction constant depend on quantum number m. Though,
energy of confined acoustic phonon is considered small and ignored in computing. So,
the resonance condition is not affected by m. The quantum number m only impacts to
the electron form factor. That means the confinement of acoustic phonon don’t affect
the EC’s changing law under increasing of magnetic field.

Figure 6

According to the magnetic field, ex-
istence of EMW also governs the EC’s law
of change. It is displayed in figure 6. E0 ap-
pears in the argument of the Bessel func-
tion and not related to the resonance con-
dition. So, E0 exists or not leading to un-
changed number of peaks. In comparison
to the case of E0 = 105V m−1(the red line),
peaks of the blue line (E0 = 0) sideways
to the left and be taller. This is differ-
ent from the case of unconfined acoustic
phonon. Without confinement of phonon,
the EC reaches the resonant points at the
same magnetic field points and be sorter if
E0 is set to zero [3].

4 Conclusions

By using the quantum kinetic equation for electron with the presence of invari-
able electromagnetic field and EMW, in this paper, we have calculated the analytic
expression of the EC, graphed the theoretical results for GaAs/GaAsAl QWPP and
compared to the case of unconfined phonon. The achievements get show that the for-
mula of EC depends on many factor, especially the quantum index m specific the
confinement of phonon. All of numberial results indicate that the quantum number m
have impacted to values of the EC. The EC values are greater when we carry out the
survey within confined acoustic phonon. If m goes to zero, the results obtained come
back to the case of unconfined phonon. Finally, we can assert that the confinement of
acoustic phonon creates surprising changes of the EC in the QWPP. When quantities
which the EC depends on are set to limited, we find out relevance to the previous
researches published.
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