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A B S T R A C T

The anharmonic contributions and pressure effects on extended X-ray absorption fine structure (EXAFS) Debye-
Waller factor of platinum metal have been investigated up to 900 K and 14 GPa within the anharmonic corre-
lated Debye model. Parameters of interatomic potential have been derived under the second-moment approx-
imation of tight binding scheme. Our calculations of the EXAFS Debye-Waller factor and anharmonic effective
potential are compared with those of experiments showing the good and reasonable agreements. We have shown
in detail that the anharmonicity of the thermal vibration of atoms give an important contribution to EXAFS
Debye-Waller factor at high temperature. And the increasing of pressure will depress the EXAFS amplitude
through the reduction of atomic mean-square relative displacement characterizing the Debye-Waller factor.

1. Introduction

The extended X-ray absorption fine structure (EXAFS) spectroscopy
is one of the most powerful technique for investigating local structures
around the X-ray absorbing atoms and thermodynamic properties of
crystalline as well as amorphous materials (Ozkendir and Yuzer, 2017;
Olovsson et al., 2016). The anharmonic EXAFS provides apparently
structural and thermodynamic information of substances such as bond
distances, coordination number and geometry at various high tem-
perature due to anharmonicity (Rehr, 2000; Iwasawa et al., 2017). This
technique can be used independently or in coordination with X-ray
diffraction or nuclear magnetic resonance spectroscopy (Ozkendir and
Yuzer, 2017). In the recent years, the remarkable developments of
EXAFS techniques permit the experiments with unprecedented accu-
racy under conditions of high pressure and high temperature.

EXAFS oscillation function is often written by means of cumulant
expansion approach which contains the second cumulant =σ σ2 (2)

corresponding to the parallel mean-square relative displacement
(MSRD) or EXAFS Debye–Waller factor (DWF) (Bunker, 1983; Fornasini
et al., 2001). DWF is an important factor in EXAFS analysis since the
thermal lattice vibrations influence sensitively the EXAFS amplitudes
through the exponential function − σ kexp( 2 ).2 2 EXAFS DWF is sensitive
to short-range correlations of atomic fluctuations and can be used to
examine the anharmonicity effects. There are many methods that have
been developed in order to evaluate the temperature effects on EXAFS

DWF such as path-integral effective-potential theory (Yokoyama,
1999), statistical moment method (Hung et al., 2010), ratio method
(Bunker, 1983), Debye model (Beni and Platzman, 1976) and Einstein
model (Frenkel and Rehr, 1993). A simple connection between EXAFS
DWF and pair interaction potential has been obtained for a cluster of
atoms using the correlated Einstein model (Frenkel and Rehr, 1993) and
the first-order thermodynamic perturbation theory (Freund et al., 1991;
Yokoyama et al., 1996).

Platinum is a widely used as a standard material for high-pressure
experiments and its Hugoniot equation-of state was measured to
660 GPa (Holmes et al., 1989). However, to the best of our knowledge,
none of theoretical calculations has been done to predict the tempera-
ture and pressure effects on EXAFS DWF of platinum metal. One of the
reason is that the Morse potential, which is frequently used in Einstein
and Debye model (Holmes et al., 1989; Van Hung and Rehr, 1997), is
not suitable to describe the complex atomic interaction of platinum
metal. It requires the more accurate interatomic interaction form for
metallic systems such as the many body embedded-atom potentials
(Daw et al., 1993), Finnis–Sinclair (Finnis and Sinclair, 1984), Rosa-
to–Guillopé–Legrand (Rosato et al., 1989), and Sutton–Chen (Sutton
and Chen, 1990; Rafii-Tabar and Sulton, 1991) types. Experimentally,
several EXAFS measurements for platinum were performed at ambient
pressure (Nishihata et al., 2001) and under pressures up to 6 GPa
(Okube et al., 2003).

The purpose of this work is to investigate the anharmonicity
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contributions and pressure effects on EXAFS DWF. Anharmonic corre-
lated Debye model (ACDM) (Van Hung et al., 2010) has been developed
considering pressure effects for platinum crystal on the basis of the
interatomic potential which has been derived by the second-moment
approximation (SMA) to the tight-binding (TB) model (Cleri and
Rosato, 1993). The numerical results will be carried out and compared
to other results and experimental values.

2. Theory

In line with the Debye model, Hung et al. developed the ACDM and
successfully investigated the temperature-dependent EXAFS cumulants,
including DWF (Van Hung et al., 2010). The ACDM in EXAFS is char-
acterized by the anharmonic effective interaction potential V x( )eff
where the oscillation of absorber and backscatterer is influenced by
their neighbors. The anharmonic effective interaction potentialV x( )eff is
given by (Van Hung et al., 2010)
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here V x( ) describes the interaction potential between absorbing and
back-scattering atoms; the sum i is over absorber ( =i 1) and back-
scatterer ( =i 2), and the sum j is over all their nearest neighbors, ex-
cluding the absorber and backscatterer themselves; keff is the effective
force constant; k3 is the cubic parameter giving an asymmetry in the
pair distribution function due to anharmonicity; and = −x r r0 is the
deviation of instantaneous bond length between the two intermediate
atoms from equilibrium.

To a good approximation, the second cumulant σ2 corresponds to
the parallel MSRD characterizing EXAFS DWF which has the form in
ACDM as
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where a0 is the lattice constant at temperature T, k eff0 is the effective
local force constant at ambient pressure which can be derived in terms
of interatomic potential parameters, =σo

a
πk
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is the zero-point con-

tributions to the EXAFS DWF σ ,2 =β k T1/ B with kB is the Boltzmann
constant, q is the phonon wave number, ω q( ) is the phonon vibration
frequency or the dispersion relation which has the form as
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where M is the mass of composite atoms.
The correlated Debye frequency ω D0 and temperature θ D0 at ambient

pressure can be determined, respectively, as
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In order to investigate the pressure effects on EXAFS DWF, two
parameters in Eq. (2) which should be considered are lattice parameter
and local force constant. The volume (and pressure) dependence of
lattice constant can be calculated as

⎜ ⎟= ⎛
⎝

⎞
⎠

=a a V
V

a η ,0
0

1/3

0
1/3

(5)

where =η V V/ 0 is the volume compression, V and V0 are correspond-
ingly the crystal volume at pressure P and zero pressure. The volume
dependence of local force constant =k Mω /4eff D

2 can be estimated by
considering the Grüneisen parameter definition in Debye model as
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where ωD is the Debye frequency depending on V (and also pressure P).
At low pressure, the Grüneisen parameter of material can be as-

sumed as constant. However, previous works (Freund et al., 1991;
Holmes et al., 1989) showed that the Grüneisen parameter reduced
gradually when pressure increased. For platinum metal, Ono and
Brodholt (2011) suggested a simple expression of volume-dependent
Grüneisen parameter as

=γ γ η ,G
p

0 (7)

where =γ 2.18(4)0 and =p 1.75(9) (Ono and Brodholt, 2011).
By substituting the Grüneisen parameter γG from Eq. (7) into Eq. (6)

and taking the integration, we derive the volume-dependent expres-
sions of the Debye frequency ωD and temperature θD, respectively, as
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And then we deduce the expression of effective force constant keff as
function of volume compression η as
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where =k Mω /4eff D0 0
2 is the effective force constant at ambient pressure.

In order to estimate the exact pressure effects on the effective force
constant, we need to know a reliable P-V relation or the equation-of-
state (EOS) of platinum crystal. There are many EOSs that have been
used on studying high-pressure thermo-mechanical properties of ma-
terials such as Vinet EOS (Vinet et al., 1987), Birch-Murnaghan EOS
(Birch, 1947), Holzapfel EOS (Holzapfel, 1991)… In literature (Cohen
et al., 2000), Cohen et al. testified that the Vinet equation would be the
most accurate one at high compression. The well-established Vinet EOS
has the form as (Cohen et al., 2000)
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where K0 and ′K0 are the isothermal bulk modulus and its first-pressure
derivative, respectively.

3. Results and discussion

The expressions derived in the previous section now will be applied
to numerically evaluate the temperature and pressure dependences of
EXAFS DWF of platinum metal. In this work, we assume the interaction
between metallic gold atoms could be described by an empirical many-
body potential, derived in analogy of the second-moment approxima-
tion of tight binding (TB-SMA) model which is written as (Papanicolaou
et al., 1998; Duc et al., 2017)

= +V r V r V r( ) ( ) ( ),B R (12)

whereV r( )B represents the band-structure term which has a many-body
character due to its

square root form as

= − − −V r ξ e( ) ,B m r r2 2 [( / ) 1]0 (13)

and V r( )R is a pair-potential repulsive term (Born-Mayer type),

= − −V r Ae( ) .R n r r[( / ) 1]0 (14)

It should be noted that, the TB-SMA potential takes into account the
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essential band character of the metallic bond: the band-structure term is
proportional to the effective width of the electronic band and the re-
pulsive pair-potential term, which incorporates the non-band-structure
parts, includes electrostatic interactions (Cleri and Rosato, 1993). The
potential parameters have typically been determined by fitting to ex-
perimental data of cohesive energy, lattice constant, bulk modulus, and
elastic constants of the system. The TB-SMA potential parameters de-
termined from first-principles calculations for platinum are respectively

=ξ 2.506 eV, A=0.242 eV, m=3.68, n=11.14 and =r 2.680 Å
(Creuze et al., 2008).

Platinum has the structural stability in the face-centered-cubic
phase to high pressures. Applying the ACDM for face-centered cubic
platinum, the anharmonic interatomic effective potential can be cal-
culated as
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Using TB-SMA potential parameters, we derive the effective force
constant at ambient pressure as follows =k 5.26eff0 eV/Å2. This second
order effective force constant is in reasonable agreement with the
measurement of Okube and Yoshiasa (2001) as =k 5.7eff0 eV/Å2. Other
value of force constant derived by Okube et al. (2003) at 0.1MPa is

=k 4.8eff0 eV/Å2. In this experiment, Okube et al. (2003) measured the
EXAFS spectra near Pt K-edge and L3-edge in the temperature range
from 300 to 800 K under pressures up to 6 GPa to investigate the an-
harmonic thermal vibrations, using large volume high-pressure devices
and synchrotron radiation. Furthermore, using the effective force con-
stant derived in our calculations, we deduce the Debye temperature of
platinum metal as =θ 246.68D0 K. This value of Debye temperature in
our calculations is consistent with previous works which also reported
the value for the Debye temperature of platinum around 240 K
(Gschneidner, 1964) (Table 1).

Our derived force constants of platinum are used for calculation of
the anharmonic effective potential Veff as a function of bond length
deviation = −x r r0 as shown in Fig. 1. We also display effective po-
tentials derived by Okube et al. (2003) (under pressure 0.1 MPa) and
Okube and Yoshiasa (2001) for comparison. As observed in Fig. 1, there
is a small difference between our effective potential and Okube and
Yoshiasa’ one. The discrepancy of Okube et al.’ result could origin from
the smaller force constant k0eff and the narrow of potential width under
pressure 0.1MPa in Okube et al.’ measurements.

In Fig. 2 we present the temperature dependence of the Debye-
Waller factor for the first-shell distances of Pt metal in comparison to
those of experimental results (Nishihata et al., 2001; Okube et al.,
2003). As seen in this figure the good agreement between theoretical
calculations and experimental measurements is found. At low tem-
perature the present ACDM formalism takes into account the quantum-
mechanical zero-point vibrations = × −σ 1.3 100

2 3 Å2. When temperature
increases the DWF increases rapidly. At =T 140 K, the DWF is two times
larger than σ0

2 and at room temperature =T 300 K, the DWF is ap-
proximately four times larger than σ0

2. And up to 600 K, DWF has a
value × −9.9 10 3 Å2 which is more than seven times larger than zero-
point vibration contributions. Beyond 150 K, the DWF shows behavior
as a linear function of temperature with the slope about × −1.6 10 5 Å2/

K. Here if we make the fitting our results with quadratic function we
derive a small quadratic term as × − T3.7 10 10 2 (Å2).

Furthermore, it should be noted that the DWF corresponds to the
parallel mean-square relative displacement that effects on the ampli-
tudes of EXAFS oscillations. The DWF includes the static disorder σstatic

2

and dynamic disorder σthermal
2 due to atomic vibrations. The static term

σstatic
2 is the structural disorder or configuration disorder which can be

estimated as the quantum-mechanical zero-point vibrations
= × −σ 1.3 100

2 3 Å2 for Pt metal. The dynamic term σthermal
2 due to

thermal vibrations of atoms or anharmonicity effects of temperature
which can be calculated by = −σ T σ σ( )thermal

2 2
static
2 . The contribution of

thermal disorder σthermal
2 provides information on the effective bond

stretching force constant between absorber-backscatterer pair corre-
sponding to the dynamical properties of them. At room temperature
and =T 600 K, the thermal disorder contributions have values

= × −σ (300 K) 3.8 10thermal
2 3 Å2 and = × −σ (600 K) 8.6 10thermal

2 3 Å2, re-
spectively. It indicates that the anharmonicity contributions of thermal
lattice vibrations become important at high temperature and the pre-
sent formalism could be used to calculate the DWF of crystals for a wide
temperature range.

In order to consider the pressure effects on DWF of platinum, we use
the Vinet EOS with the isothermal bulk modulus K0 and its first-pres-
sure derivative ′K 0 are deduced from literature (Ono and Brodholt,
2011). Fig. 3 reports the pressure dependence of the DWF and the
difference = −Δσ σ P σ( ) (0 GPa)2 2 2 between the DWF at pressure P and

Table 1
Effective force constant k ,eff0 Debye frequency ω D0 and temperature θ D0 of
platinum metal at ambient pressure.

k eff0 (eV/Å2) ×ω ( 10 Hz)D0 13 θ (K)D0

Present theory 5.26 3.23 246.68
Other works 5.7a, 4.8b 3.14c 240c

a Ref (Okube and Yoshiasa, 2001).
b Ref (Okube et al., 2003).
c Ref (Gschneidner, 1964).

Fig. 1. Anharmonic effective potential of platinum.

Fig. 2. Temperature dependence of the Debye-Waller factor of platinum.
Experimental measurements (solid squares, solid circles) (Nishihata et al.,
2001; Okube et al., 2003) are presented for comparison.
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ambient pressure for the first-shell distances of platinum metal in
comparison to those of experimental results (Okube et al., 2003). It can
be seen in this figure, results of our developed ACDM are in very good
agreement with those of Okube et al., measurements up to 6 GPa but
with small higher values. The DWF curve of Pt metal diminishes gra-
dually when pressure increases. At zero pressure =P 0, the DWF of Pt is

× −9.9 10 3 Å2. Up to pressure 14 GPa, the DWF σ2 is reduced and has the
value × −8.4 10 3 Å2. The slopes of σ2 curve at zero pressure and at
14 GPa are, respectively, × −8.8 10 5 Å2/GPa and × −1.36 10 5 Å2/GPa.
This result will depress the EXAFS amplitude. This phenomenon can be
explained as when pressure increases the vibration of atoms will be
limited and it results in the reduction of atomic mean-square relative
displacement characterizing the DWF.

4. Conclusions

In this work, we have presented a simple development of ACDM to
investigate the temperature and pressure dependences of EXAFS DWF
of materials. EXAFS DWF of platinum metal has been calculated nu-
merically up to 900 K and 14 GPa by using the TB-SMA potential. Our
calculations have shown that the anharmonicity contributions of
thermal lattice vibrations become important to the EXAFS DWF, espe-
cially at high temperature. And the increasing of pressure will depress
the EXAFS amplitude through the reduction of atomic mean-square
relative displacement characterizing the DWF. This approach could be
used to verify as well as analyze the future high-temperature and high-
pressure EXAFS experiments. It could also be extended to study ther-
modynamic properties including anharmonicity of alloys in EXAFS
theory in the near future.
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