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A B S T R A C T

The pressure effects on melting temperature and shear modulus of the B1 phase of LiF are investigated based on a
semi-empirical approach. We derived analytical expressions of these quantities as functions of pressure.
Numerical calculations are performed for LiF up to pressure of 100 GPa. Our work reveals that the melting curve
derived from the Simon-Glatzel equation shows a high gradient at pressure below 30 GPa and rather quickly
flattens with the increasing of pressure in accord with experiments, much more precise than the calculations
based on the Lindemann melting criterion and the power-law of Grüneisen parameter. Meanwhile, the pressure-
dependent shear modulus derived from Burakovsky’s model and the power-law of Grüneisen parameter shows a
good agreement with ab initio calculations. Our results provide a further supplement to the database of high-
pressure melting temperature and shear modulus of LiF. The present work could be used to verify as well as
analyze the future high-pressure experiments.

1. Introduction

Lithium fluoride (LiF) is an ionic crystal and an insulator with B1
structure (NaCl type) at ambient pressure and temperature. Previous
works showed that LiF remains stable in the B1 phase up to pressure
greater than 100 GPa [1,2]. This crystal is one of the largest optical gap
solids (above 11 eV) and it is an optically transparent insulator which is
predicted to remain transparent up to pressure of 200 GPa [3]. This
property of LiF allows it to be widely used as a window material
through which to carry out wave profile measurements for dynamic
compression experiments. Furthermore, LiF can be used as a pressure-
transmitting medium and a pressure calibrant in static compression
measurements on a diamond anvil cell (DAC) [4]. Due to these above
applications, investigation of physical properties of LiF at high pressure
becomes a subject attracting the attention from a broad experimental
research community [5,6].

With remarkable developments of experimental techniques, re-
searchers could perform various methods to measure the pressure-vo-
lume data (e.g., equation-of-state) [7], refractive index [8], melting
temperature [2],…of LiF up to hundreds of GPa in order to optimize its
application as an interferometer window. On the theoretical side, nu-
merous approaches were employed to predict high-pressure

thermodynamic properties, mechanical properties, optical properties
and phase transition of LiF such as first-principles calculations [9–11],
ab initio many-body Green’s function calculations [6], molecular dy-
namics (MD) simulations [12,13]. However, to the best of our knowl-
edge, the prediction of high-pressure melting point of LiF is still under
debate and disagreement among different methods such as DAC ex-
periment [2], MD simulations [12,13], and ab initio calculations [10].
Moreover, there is seemly no experimental measurement for the shear
modulus of LiF at high pressure.

In present study, with the aim of contributing to the database of
high-pressure physical properties of LiF crystal, we present a semi-
empirical approach to investigate the pressure effects on its shear
modulus and melting temperature. Numerical calculations are per-
formed up to pressure of 100 GPa in which the LiF crystal is in the B1
phase. Our theoretical results are compared with those of previous
published data when possible to verify theory.

We organize this paper as follows, in Section 2, we present a the-
oretical approach to study thermo-mechanical properties of LiF which
are solved numerically. In Section 3, we discuss numerical results in
detail followed by Section 4 in which we make the conclusions of the
paper.
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2. Theory

In this work, the pressure effects on the shear modulus and the
melting temperature of LiF are studied by considering the relations
between these thermodynamic quantities and Grüneisen parameter.
Regarding to the melting problem, the most widespread theory has
been applied for the investigation of melting is the Lindemann melting
criterion [14–17]. This criterion was stated that “A material starts to
melt when the ratio between atomic mean-square vibration and square
of nearest-neighbor distance reaches a threshold value” [18]. This
threshold value is characteristic for each material. Previous works
showed that Lindemann melting criterion can be re-written as the fol-
lowing melting formula [19,20]

= ×T Vconst . ,m D
2
3 2 (1)

where T V,m and D are the melting temperature of material, crystal
volume and Debye temperature, respectively.

From Eq. (1), we can easily derive it into the equation

=T
V V

ln( ) 2 1
3

,m
G (2)

where = Vln / lnG D is the Grüneisen parameter in Debye model.
The Grüneisen parameter was proposed by Grüneisen [21] to describe
the volume dependence of phonon frequencies i as =G i V

ln
ln

i .
Previous works showed that the Grüneisen parameter can be seen as
constant at low pressure, and it reduces gradually when pressure in-
creases [22–24]. Some experimental results proposed the law

=V/ constG . [25] More general form of the Grüneisen parameter
suggested by Graf et al. [26] is
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q
q
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where 0 andV0 are the Grüneisen parameter and crystal volume at zero
pressure, respectively; and = V V/ 0 is a volume compression [26,19].
This power-law form described well the pressure-dependent Grüneisen
parameters of copper and gold metals, and was successfully applied to
investigate the pressure dependence of mean-square displacements of
these noble metals [26]. It should be noted that, the simple law

=V/ constG is a particular case of Eq. (3) when =q 1 is applied.
Substituting Eq. (3) into Eq. (2) and taking integral, we derived the

expression of melting Tm as a function of volume compression as

=T T
q
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2
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q

0
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(4)

where T0 is the melting temperature of material at ambient conditions.
Now we consider the pressure dependence of the shear modulus

based on its relation with the Grüneisen parameter. There are many
analytic models describing this relation such as Guinan and Steinberg
model [27], and Preston and Wallace model [28]. In current paper we
use a model proposed by Burakovsky et al. [29,30] as

= G
V

1
2

ln
ln

1
6

.G (5)

Here it should be noted that the Lindemann melting criterion re-
quires volume dependence of V( 2, )D which is proportional to the
second frequency moment of atomic vibrations, while Eq. (5) of shear
modulus G has a relation with V( 3, )D . For simplicity, in this work,
we make an assumption that V V( 2, ) ( 3, )D D D or

V V( 2, ) ( 3, )G G G. Indeed, the assumption was applied by
Foata-Prestavoine et al. to investigate the elastic constants, phonon
dispersion curves, and melting temperatures of bcc Ta up to 1000 GPa
[31]. The authors pointed out that in the relatively high compression
range, no highly significant differences (about 10%) are expected when
using V( 2, )D or V( 3, )D to estimate Tm with the Lindemann
melting criterion. It was seen as a fundamental uncertainty in their ab

initio calculations.
By substituting the Grüneisen parameter expression Eq.(3) into Eq.

(5), and taking integral we derived the following expression of the shear
modulus as

=G G
q

exp
2

(1 ) ,q
0

1/3 0

(6)

where G0 is the shear modulus at ambient pressure.
Taking into account Eqs. (4) and (6), the volume dependence of the

shear modulus and melting temperature of material can be calculated
numerically. In order to consider the pressure effects on these physical
quantities, we need to know an equation-of-state (EOS) which accu-
rately describes the relation of pressure, volume and temperature of
system. Many EOSs have been proposed to study thermodynamic
properties as well as phase transitions of solids at high pressure such as
Birch-Murnaghan EOS [32], Holzapfel EOS [33]…In the work of Cohen
et al. [34], the Vinet equation is found to be the most accurate EOS at
high compressions, and it will be used in this paper. The well-estab-
lished Vinet EOS has the form as [35]

= ×P B B3 (1 ) exp 3
2

( 1)(1 ) ,0
2/3 1/3

1
1/3

(7)

where B0 and B1 are correspondingly the isothermal bulk modulus and
its first-pressure derivative.

3. Results and discussion

In the following, the expressions established in the previous section
are applied to calculate numerically shear modulus and melting tem-
perature of LiF crystal. By using the experimental measurements of bulk
sound velocities and the Hugoniot data to determine Grüneisen para-
meter of LiF, Liu et al. [36] showed that all calculated data points of
Grüneisen parameter can be fitted with a power-law function as

=G 0
0.842. It means that in Eq. (3), parameter q is equal to 0.842 for

LiF. The melting temperature of LiF at ambient pressure is =T 11130 K
[37]. From synchrotron radiation X-ray powder diffraction and a DAC,
Liu et al. [4] determined EOS and thermal expansivity of LiF up to
pressure of 37 GPa and derived experimental data of isothermal bulk
modulus as =B 73.040 GPa and =B 3.901 .

Using Eq. (4), numerical calculations of melting temperature Tm
(dashed line) are performed for LiF up to pressure of 100 GPa and then
plotted in Fig. 1. By performing MD simulations of the melting and/or
freezing of LiF, Belonoshko et al. showed that the B1–B2 transition in

Fig. 1. Melting curves Tm of LiF in B1 structure up to pressure 100 GPa. Our
melting lines are compared with DAC experimental data [2], ab initio calcu-
lations [10], and MD simulations [12,13].
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LiF at around 100 GPa removes the discrepancy between the DAC and
shock-wave melting temperatures [12]. The DAC experimental data
(closed circles with error bars) measured by Boehler et al. [2], ab initio
calculations (dashed-dotted line) [10] and MD simulations (closed
squares and closed diamonds) [12,13] are also shown for comparison.
As it can be seen from the Fig. 1, while ab initio calculations go along
with experimental data, the results calculated from Lindemann melting
criterion are just in good agreement with measurements beyond pres-
sure of 80 GPa. At pressure below 80 GPa, our theoretical calculations
underestimate the data of DAC experiment, especially at pressure of
about 20 GPa. At this pressure, the melting slope dT dP/m of Lindemann
melting line is significantly different from the DAC melting data of LiF.
Especially, two MD simulations [12,13] show large deviations from our
calculations as well as DAC measurements of Boehler et al. [2]. At
pressure 100 GPa, the differences between MD simulations and DAC
results are about 1000 K. These discrepancies at high pressure were
explained that the pair-wise Tosi-Fumi [12] and Buckingham [13] po-
tentials are inappropriate in studying LiF material. Nevertheless, all of
the calculated and DAC experimental melting curves of LiF exhibit
common features of the pressure-dependent melting line. They increase
rapidly at low pressure and flatten considerably at high pressure.

One of the most well-known empirical equations which can re-
present experimental data for “normal” melting curve is two-parameter
Simon-Glatzel equation [38]. It is a rising melting function and has the
form as

= +T T P
a

1 ,m
b

0 (8)

where a and b are parameters characterizing for studied material.
By fitting DAC melting measurements of LiF [2] to Simon-Glatzel

empirical function in the least-square approximation, we obtained two
parameters =a 1.2306 and =b 0.2384. As it can be seen in Fig. 2, the
two-parameter Simon-Glatzel equation can well predict the melting
point of LiF in all studied pressure range, much more exact than the
calculations based on the Lindemann melting criterion. The Simon-
Glatzel melting curve (solid line) shows a high gradient at pressure
below 30 GPa and rather quickly flattens with the increasing of pressure
in accord with DAC experimental measurements.

The difference between high-pressure Lindemann melting curve and
experimental data could originate from some reasons: (i) the limitation
of Lindemann criterion approach on studying the melting phenomenon
of materials at high pressure: Previous studies showed that this criterion

works for many materials but not for all of them [39,17]; (ii) the power-
law of Eq. (3) may not describe exactly the pressure dependence of
Grüneisen parameter of LiF; (iii) the harmonic approximation in the
temperature-dependent Debye model has neglected the anharmonicity.
This would underestimate the melting temperature of LiF at high-
pressure and high-temperature. The controversy requires further cal-
culations with more accurate quantum mechanics techniques.

It is worth to mention that Eq. (1) of Lindemann melting criterion
can also be developed to the following melting equation [23]

=T
P B

ln( ) 2 1
3

,m

T
G (9)

where =B V P V( / )T T is the isothermal bulk modulus.
By substituing Eq. (8) into Eq. (9), we derived an expression of the

Grüneisen parameter as a function of pressure P as

= + +
+
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where the isothermal bulk modulus = +B B B PT 0 1 with B0 and B1 are,
respectively, the isothermal bulk modulus at ambient pressure and the
first pressure-derivative of isothermal bulk modulus.

Combining Eq. (10) with Eq. (5) proposed by Burakovsky et al. [29],
we obtained the pressure-dependent shear modulus as

= + +G G B
B

P P
a

1 1 .
B b

0
1

0

1/ 1

(11)

By substituting the fitted parameters =a 1.2306 and =b 0.2384 into
Eq. (11) we can easily determine the pressure-dependent shear modulus
of LiF. In Fig. 2, we present the shear modulus lines of LiF calculated
from Eq.(6) (solid line) and Eq. (11) (dashed line) as functions of
pressure up to 100 GPa. The shear modulus results derived from ab
initio calculations of elastic constants [10,40] have also been shown for
comparison. From this figure we can see that the shear modulus of LiF
rapidly increases with the increasing of pressure. Although the calcu-
lated shear modulus curve from Eq. (11) has a high gradient at low
pressure and rather quickly flattens with increasing pressure, the shear
moduli calculated from Eq.(6) are in accordance with those derived
from elastic constants in ab initio calculations of Smirnov [10]. The
shear moduli derived from Wang et al.’ work show the same behavior
but to a somewhat lesser extent. Furthermore, while the shear modulus
calculated from Eq. (6) can be well fitted by a quadratic polynomial as

= +G P P57.68 2.33 2.81.10 3 2 (GPa), the second curve calculated
from Eq. (11) is badly fitted by polynomial function with order smaller
than 5. The results of shear modulus are significant to geophysical
implications. It can be used to calculate as well as analyze the shear
wave polarized perpendicular and parallel to the basal plane [41,42].
The present results can be used as reference data for future high-pres-
sure experiments and theoretical works. The discrepancy between two
theoretical curves also requires further investigations of the shear
modulus of LiF.

4. Conclusions

In this work, the pressure effects on melting curve and shear mod-
ulus of the B1 phase of LiF have been studied based on the semi-em-
pirical approach. Our calculations up to pressure of 100 GPa reveals
that the melting curve derived from the Simon-Glatzel equation shows a
high gradient at pressure below 30 GPa and rather quickly flattens with
the increasing of pressure in accord with experiments, much more
precise than the calculations based on the Lindemann melting criterion
and the power-law of Grüneisen parameter. The latter approach gives
the melting line with slope significantly deviating from the experi-
mental data. The combination of Burakovsky’s model and the power-
law of Grüneisen parameter gives the pressure-dependent shear mod-
ulus which agrees well with ab initio calculations. The present work

Fig. 2. Shear modulus G of LiF in B1 structure up to pressure of 100 GPa. The
results derived from ab initio calculations of elastic constants [10,40] have also
been shown for comparison.
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supplements to the database of high-pressure melting temperature and
shear modulus of LiF. The discrepancy between two pressure-dependent
shear modulus curves requires further investigations for LiF.
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