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Abstract. Correlation ratios between the mean square displacement (MSD), mean square
relative displacement (MSRD), and correlated displacement function were studied in extended
X-ray absorption fine structure spectra (EXAFS). The expressions of MSD, MSRD, and
correlation function were determined using Debye models. Hardy problems due to many-
particles effects were considered and replaced by a calculation based on the effective anharmonic
potential, including the interaction of absorbing and scattering atoms with their nearest
neighbours atoms. Based on the Debye-Waller factor, the difference between MSRD and MRD
was analyzed, and their ratios have calculated. The methods were applied to fcc crystals and
their alloys. Numerical results for Cu, Ag crystals and CuAg50 alloys agreed with experimental
values and other studies.
Keywords: Anharmonic effective potential; Correlated displacement function; Correlation
ratio; Debye-Waller factor; Mean square displacement.

1. Introduction
In the harmonic approximation, extended X-ray absorption fine structure (EXAFS) is usually
written form;

χ(κ) =
∑
j

S2
0(κ)Nj

κ<2
j

Fj(κ)e−2σ
2
jκ

2

e−2<j/λ sin[2κ<j + δj(κ)], (1)

where S2
0 , Nj , F (κ), δ(κ), <j , κ and λ have been defined [2], [5]. The factor in the exponential

function of the Eq.(1) Z(T ) = 2σ2jκ
2(T ) is the Debye-Waller factor (DWF), σ2(T ) in Mean

Square Relative Displacement (MSRD) of the bond between two nearest atoms [7]. During the
diffraction of neutrons or X-ray absorption, the DWF has a similar form Z(T ) = (1/2)σ2ju

2(T ).
In the EXAFS spectra, DWF refers to correlated averages over the relative displacement of
σ2(T ) for a pair of absorber and backscatter atoms. While neutron diffraction refers to the
Mean Square Displacement (MSD) u2(T ) of a given atom. The functions σ2(T ) and u2(T )
are closely related to one another, and from them, the Displacement-Displacement Correlation
Function CR(T ) can be deduced to describe the correlation effects in the vibration of atoms. The
DWF has an essential role in the determination of crystal structures as well as thermal quantities
in the EXAFS spectra.Have been many studies to derive the procedures for the calculation and
analysis of σ2(T ) [5], [13], [14], and u2(T ) [1], [12]. However, correlation effects for intermetallic
alloys have not mentioned by many studies.
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In this work, correlation effects were analyzed and are described by the CR(T ) function
based on DWF in EXAFS. Analytical expressions were determined for the σ2(T ) function based
on the Anharmonic Correlated Debye Model (ACDM) and for the u2(T ) function based on
the Anharmonic Debye Model (ADM), ratios of σ2(T ), u2(T ) and CR(T ) were considered.
The effects of multi-particle systems were taken into account in the present one-dimensional
model by a simple measure based on the derived anharmonic effective potentials that include
the interactions of absorber and backscatter atoms with their nearest neighbours. Single-
pair interactions of atoms are described by the Morse potential. The studies were analyzed
the difference between the σ2(T ) obtained from the ACDM and u2(T ) from the ADM.
Simultaneously, the analytical expressions were created for face-centred-cubic (fcc) crystal and
its alloys.The numerical results for application to copper (Cu), silver (Ag) crystals and CuAg72,
CuAg50 alloys. The expression CuAg72 refers to an alloy with 72% of Cu and 28% of Ag ratio,
and CuAg50 refers to an alloy with Cu:Ag in a 50:50 ratio (or 1:1 ratio).These materials have
been of interest to the authors in a few recent studies [3], [4]. The results obtained by the present
theory agree well with experimental values [6], [10], [11] and other studies [1], [4], [9].

2. Formalism
In the Eq. (1), the quantity σ2(T ) is defined while taking the exponential averages exp(2iκrj)
in the form [2] 〈

exp(2iκrj)
〉
→
〈
exp(2iκΓj)

〉
=
〈
exp(−2κ2Γ2

j )
〉
. (2)

In Eq.(2), Γj = <̂0
j .(uj − u0) where <̂0

j is a unit vector for atom j at equilibrium, uj is a
displacement vector of atom j, and u0 is the displacement vector of the absorber atom located
at the coordinate origin. For the harmonic approximation oscillation,

σ2j =
〈

Γ2
j

〉
. (3)

Substitute Γj = <̂0
j .(uj − u0) into expression (3), σ2(T ) has the form:

σ2j (T ) =
〈[
<̂j(uj − u0)

]2〉
=
〈

(uj .<̂j)2
〉

+
〈

(u0.<̂j)2
〉
− 2
〈

(uj .<̂j)(u0.<̂j)
〉
. (4)

With u0 = uj , the u2(T ) as:

u2j (T ) =
〈

(uj .<̂j)2
〉

=
〈

(u0.<̂j)2
〉
, (5)

and the correlated function CR(T ):

CR(T ) = 2
〈

(u0.<̂j).(uj .<̂j)
〉
. (6)

From expressions (4,5,6), the relation expression between of the quantities can be deduced:

σ2j (T ) = 2u2j (T )− CR(T ). (7)

To determine the quantities σ2(T ), u2(T ), and CR(T ) with an anharmonic effect, we need to
determine the effective spring force constants (force constants - FC) of atomic pairs in a cluster
of the nearest atoms. The determination of FCs is based on the effective anharmonic potential
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as a function along the direction of the displacement x. According to ACDM, the anharmonic
potential has the following form [8], [10]:

UAeff (x) ≈ 1

2
kAeffx

2 + kA3effx
3, (8)

and in the ADM has the form;

UAeff (x) ≈ 1

2
kDeffx

2 + kD3effx
3, (9)

here kAeff , and kDeff are FCs, kA3eff and kD3eff are cubic parameters that cause asymmetry of
the interaction potential due to anharmonicity, x is the lattice thermal expansion r, r0 are
the distance between two atoms at temperature T , and its value at the equilibrium position,
respectively. The difference between the FCs and cubic parameters (PCs) lead to the difference
between UAeff (x) and UDeff (x) potentials in the Eqs. ()8, 9).
The values of the FCs and the PCs can be obtained when effective potentials are determined.
Assume M1 is the mass of the absorbing atom, and the scattering atomic mass is M2, and take
on that the atomic mass is in the centre of the pair of absorbing and scattering atoms.

In the ACDM, the potential UAeff (x) will take the form;

UAeff (x) = U(x) +
∑
i 6=j

U
( µ

Mi
x<̂12.<̂ij

)
, (10)

where U(x) represents an interaction potential between absorber and backscatter atoms, the
sum of i over absorber (i = 1) and backscatter (i = 2) atoms and the sum of j over their
nearest neighbours in a cluster of atoms describe the lattice contributions to pair interactions
and depend on the crystal structure type. <̂ is the unit vector, µ = (M1M2)/(M1 +M2) is the
reduced mass. For simplicity, we assume M1 = M2 = M and µ = M/2 . For fcc crystals, the
potential UAeff (x) as:

UAeff (x) = U(x) + 2U
(
− x

2

)
+ 8U

(
− x

4

)
+ 8U

(x
4

)
. (11)

Similarly, according to the ADM, the UDeff (x) potential with an expression of the single-
particle effective potential, and when only the influence of N neighbour atoms is taken into
account, the UDeff (x) potential can be written as

UDeff (x) =
N∑
j=1

U
(
x<̂0.<̂j

)
, (12)

where <̂j is the jth atom unit vector from the equilibrium site, for fcc crystals:

UAeff (x) = U(x) + U(−x) + 4U
(x

2

)
+ 4U

(
− x

2

)
. (13)

The use of the effective potentials in the above equations changed the complex three-
dimensional problem for multi-particle effects into a more straightforward one-dimensional
problem.
Expansion the Morse potential to the third-order around a minimum point:

U(x) = G
(
e−2ϕx − 2e−2ϕx

)
≈ G

(
− 1 + ϕ2x2 − ϕ3x3 + ...

)
, (14)



45th Vietnam Conference on Theoretical Physics (VCTP-45)
Journal of Physics: Conference Series 1932 (2021) 012012

IOP Publishing
doi:10.1088/1742-6596/1932/1/012012

4

where φ is the width of the potential, and G is the dissociation energy. For intermetallic alloys
AB, if the two-component symbols of alloys follow the indexes 1 and 2, we have ϕ12 and G12.
Their values are calculated as a percentage of alloy doping [4].

According to the ACDM, FCs as:

kAeff = 5G12ϕ
2
12, kA3eff = −3

4
G12ϕ

3
12, (15)

and the ADM as:

kDeff = 8G12ϕ
2
12, kA3eff = −G12ϕ

3
12. (16)

Derivation the expressions (4, 5, 6). Describe the system in the Debye model involving all
frequencies up to the Debye frequency, each of which corresponds to a wave with a frequency
ω(q) and different wavenumbers. Based on ACDM, σ2(T ) has the form;

σ2(T ) =
~c

2πkAeff

� π
c

0
ωA(q)

1 + zA(q)

1− zA(q)
dq, (17)

zA(q) = eβ~ωD(q), ωD(q) = 2

√
2kDeff
M
|(sin qc/2)|, β =

1

kbT
. (18)

Substitute from Eq. (5) into Eqs. (17), (18), it has the following form σ2(T ):

σ2(T ) =
~c

10πG12ϕ2
12

� π
c

0
ωA(q)

1 + zA(q)

1− zA(q)
dq, (19)

zA(q) = eβ~ωA(q), ωA(q) = 2

√
10G12ϕ2

12

M
|(sin qc/2)|, |q| ≤ π

c
. (20)

Similarly, for ADM, the u2(T ) have been determined as

u2(T ) =
~c

2πkDeff

� π
c

0
ωD(q)

1 + zD(q)

1− zD(q)
dq, (21)

zD(q) = eβ~ωD(q), ωD(q) = 2

√
2kDeff
M
|(sin qc/2)|, (22)

from Eq. (16) into Eqs. (21, 22), will obtain

u2(T ) =
~c

16πG12ϕ12

� π
c

0
ωD(q)

1 + zD(q)

1− zD(q)
dq, (23)

zD(q) = eβ~ωD(q), ωD(q) = 2

√
8G12ϕ2

12

M
|(sin qc/2)|, |q| ≤ π

c
, (24)
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where c is the lattice constant, q is the phonon wavenumber, and M is the mass of composite
atoms. From Eqs. (19, 20, 23, 24), and (7), we have the correlated function CR(T ):

CR(T ) =
~c
2π

{ 1

kDeff

� π
c

0
ωD(q)

1 + zD(q)

1− zD(q)
dq − 1

kAeff

� π
c

0
ωA(q)

1 + zA(q)

1− zA(q)
dq
}
, |q| ≤ π

c
. (25)

Substitute Morse potential parameters for fcc crystals into Eq.(25), will obtain the correlation
function

CR(T ) =
~c

2G12ϕ12

{1

4

� π
c

0
ωD(q)

1 + zD(q)

1− zD(q)
dq − 1

5

� π
c

0
ωA(q)

1 + zA(q)

1− zA(q)
dq
}
, |q| ≤ π

c
. (26)

3. Numerical results and discussion
Using the Eqs. (19-26) to calculate for Cu, Ag, CuAg72, and CuAg50 crystals. The results
of the theoretical calculation of the Morse potential parameter and the experimental Morse
parameters [10] listed in Table 1, and the FCs listed in Table 2. The data in the tables
show the agreement of the theoretical calculations with experimental measure values and other
studies [6], [10], [11], [14], [15]. Substituting the parameters in Tables 1 and 2 into Eqs. (19),
(23), (26), we will get the σ2(T ), u2(T ), and CR(T ) for Cu crystals and CuAg72 CuAg50 alloys.

Quantities/ G12(eV ) G12(eV ) ϕ12(Å
−1

) ϕ12(Å
−1

)
Crystals (Present) (Expt.) Present) (Expt.)
Ag-Ag 0.3429 0.3528 1.3588 1.4072
Cu-Cu 0.3323 0.3253 1.3690 1.3535

CuAg72 0.3381 - 1.3634 -
CuAg50 0.3376 - 1.3638 -

Table 1: Morse potential parameters G12 and ϕ12.

There is a significant difference between the correlation oscillation model and the single-
particle anharmonic oscillation model. The reason for this difference is the determination of the
number and mass of atoms oscillating in two models. For the correlation oscillation model, the
quantity and mass of particles are only half those of the single-particle anharmonic oscillator.
In the correlated oscillation model, a crystal will act as quasi-atoms. That means that the mass
reduced to equal only half of the composite atomic mass, and the number of atoms is only half
the number of atoms for a single-particle anharmonic vibration model.

Figure 1 shows the temperature dependence of σ2(T ) (Fig. 1a) and u2(T ) (Fig. 1b) for Cu,
Ag and CuAg72 and CuAg50 crystals. They show linear proportional to the temperature T at
high temperatures. At the same temperature, the values of σ2(T ) are greater than the values

Quantities/ kAeff (eV A−2) kAeff (eV A−2) kDeff (eV A−2) kDeff (eV A−2)

Crystals (Present) (Present) (Present) (Expt.)
Cu-Cu 3.1655 3.4931 5.5889 5.7520
Ag-Ag 3.1139 2.9797 5.3254 -

CuAg72 3.1423 - 5.0278 -
CuAg50 3.1396 - 5.0234 -
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Quantities/ kA3eff (eV A−3) kA3eff (eV A−3) kD3eff (eV A−3) kD3eff (eV A−3)

Crystals (Present) (Present) (Present) (Expt.)
Cu-Cu 1.0753 1.2289 1.0889 0.9831
Ag-Ag 1.0657 1.0083 1.1354 -

CuAg72 0.6814 - 2.6874 -
CuAg50 0.6423 - 0.8569 -

Table 2: Effective spring force constants and cubic parameters.

Figure 1. The temperature dependence of mean square relative displacement (a) and mean
square relative displacement (b) for Cu,Ag, CuAg72 and CuAg50 crystal alloys

of σ2(T ), which is evident in Fig. 1b. The experimental values of σ2(T ) (symbol points *) are
higher with the experimental curves of u2(T ) [6].

Figure 2 illustrates the dependence of the CR(T ) on temperature for Cu, Ag crystal and
CuAg72 and CuAg50 alloys. Similar to the graphs depicting the dependence on temperature
of σ2(T ) (Fig. 1a) and u2(T ) (Fig. 1b), they are all linearly proportional to the temperature
T at high temperatures, the classical limit is applicable. At low temperatures, the curves for
Cu, Ag and CuAg72 contain zero-point energy contributions - a quantum effect. The calculated
results of σ2(T ), u2(T ) and CR(T ) for the Cu, Ag crystal fitting well with the experimental
values [6], [10], [15]. Thus, it is possible to deduce that the calculation results of the present
method for CuAg72, CuAg50 are reasonable. Moreover, the values of σ2(T ) are greater than
those of u2(T ), making the damping coefficients in EXAFS of the correlation oscillation model
larger than those of single-particle anharmonic oscillation models.

Figure 3 shows the temperature dependence of the correlated ratios CR(T ).u2(T )/σ2(T ), the
graph illustrates linearly proportional to the temperature T at high temperatures and suitable
the curve line inferred from the empirical data (dashed line blue, Pirog, 2002). Opposite,
Figure 4 illustrates the temperature dependence of the correlated ratios σ2(T )/CR(T ).u2(T ),
the values decreased very quickly at low temperatures, unchanged at high temperatures reflected
the correlation effect between these quantities in the classical theories.

Note that, have an attractive characteristic in all figures is the curves of CuAg72 and CuAg50
inter-metallic alloys. For the CuAg72 alloy, the shape of the curve is similar to the curvature
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Figure 2. Temperature dependence of the correlation function CR(T ) for Cu,Ag, CuAg72 and
CuAg50 crystals

Figure 3. Correlation ratios of u2(T ).CR(T )/σ2(T ) for Cu,Ag, CuAg72 and CuAg50

of pure Cu, Ag crystals, meaning that the structure of the CuAg72 alloy is not broken still fcc
structure type. However, for the CuAg50 alloy (black lines in Figs. 1, 2 and red lines in Figs.
3, 4), the curves have an abnormal shape, does not zero-point energy, and does not follow the
rules like of Cu, Ag and CuAg72 at low temperatures (in the range from 140 K to 200 K, more
clearly in the Figs. 3, 4a, 4b). At higher temperatures 200 K, the curve gradually returns to
forms like of Cu, Ag and CuAg72 crystals. It is speculated that for the CuAg alloy at a ratio of
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Figure 4. Correlation ratios of σ2(T )/CR(T ).u2(T ) for Cu,Ag, CuAg72 and CuAg50

50:50 (or 1:1 ratio), the atoms are no longer closely linked to each other in the style of the fcc
lattice at low temperatures (meaning that no Cu-Ag alloy material exists in this ratio, Cu:Ag
= 50:50). As the temperature increases, the correlation between the atoms changes until the
temperature reaches a certain value (over 200 K). The fcc lattice order slowly recovers, and the
graph curve of CuAg50 returns like to the Cu, Ag and CuAg72. It is entirely reasonable with
studies done with other models and theories, as well as experiments with the Cu-Ag alloy at the
percentage ratio of 1:1 (CuAg50) [4], [9].

4. Conclusions
In this work, the correlation effects of the displacement correlation function, mean square
relative displacement, and the mean square displacement in EXAFS spectra and their ratios
were deduced and analyzed. The theory was applied to Cu, Ag, CuAg72, CuAg50 crystals and
alloys. The analytical expressions of CR(T ), σ2(T ), and u2(T ) were inferred based on Debye
models. The advantage of these models is based on the use of anharmonic effective potentials,
which take the contributions of all the nearest neighbouring atoms. The difference of the effective
spring force constant and the difference in the number and mass of vibrating atoms in these
models causes a difference in the thermodynamic properties of the crystals.

The values of σ2(T ), u2(T ), and CR(T ) are all linearly proportional to the temperature T
at high temperatures, and the classical limit is applicable. At low temperatures, they contain
zero-point energy contributions, a quantum effect. The correlated ratios CR(T ).u2(T )/σ2(T )
linearly proportional to the temperature T at high temperatures agree well for the curve line
inferred from the empirical data (dashed line blue, Pirog, 2002). Opposite, the correlated
ratios σ2(T )/CR(T ).u2(T ) are constant at high temperatures, correctly reflected the correlation
between these quantities in the EXAFS classical theories.

The crystal lattice of the CuAg50 alloy showed an abnormal disorder at rank 140K-180K
temperatures. We speculate that Cu and Ag atoms no longer closely had linked lattice structures
the fcc structure type, that means, CuAg alloy material with a ratio of 50:50 (or 1:1 ratio),
does not exist at temperatures approximation from 140K to 200K. This result discovered by
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Kraut and Stern (2000) as well as other theoretical studies by Nguyen, Vu (2019), and Nguyen
(2020). These anomalies may give rise to many new interesting in-depth studies for researchers
specializing in materials science.

The good agreement between the calculation results of the present study and the values
obtained from experiments and calculations according to other models prove the effectiveness of
the present theory in EXAFS spectrum data analysis.
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