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A new anharmonic factor and the extended X-ray absorption fine structure (EXAFS) including
anharmonic contributions have been developed based on the cumulant expansion and the single-shell
model. Analytical expressions for the anharmonic contributions to the amplitude and to the phase of the
EXAFS have been derived. The EXAFS and its parameters contain anharmonic effects at high
temperature and approach those of the harmonic model at low temperature. Numerical results for Cu
agree well with experiment. Peaks in the Fourier transform of the calculated anharmonic EXAFS for the
first shell at 297K and 703K agree well with the experimental ones and are shifted significantly
compared to those of the harmonic model.
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1. Introduction

The harmonic approximation in EXAFS calculations
works very well1) at low temperatures because the anhar-
monic contributions to atomic thermal vibrations can be
neglected. But at different high temperatures the EXAFS
spectra provide apparently different structural informa-
tion2–17) due to the anharmonicity, and these effects need
to be evaluated. Moreover, for some aspects like catalysis
research the EXAFS studies carried out at low temperature
may not provide a correct structural picture and the high-
temperature EXAFS, where the anharmonicity must be
included, is necessary.2) The formalism for including
anharmonic effects in EXAFS is often based on the cumulant
expansion approach,3,5) according to which the EXAFS
oscillation function is described by

�ðkÞ ¼ FðkÞ
e�2R=�ðkÞ

kR2
Im ei�ðkÞ exp 2ikRþ

X
n

ð2ikÞn

n!
�ðnÞ

" #( )
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where FðkÞ is the real atomic backscattering amplitude, � is
the net phase shift, k and � are the wave number and the
mean free path of the photoelectron, respectively, and �ðnÞ

(n ¼ 1; 2; 3; . . .) are the cumulants. They appear due to the
thermal average of the function exp ði2krÞ in which the
asymmetric terms are expanded in a Taylor series about R ¼
hri with r as the instantaneous bond length between
absorbing and backscattering atoms and then are rewritten
in terms of cumulants.

Based on this approach the anharmonic effects in EXAFS
have been often valuated by the ratio methods.3–9) Another
way is the direct calculation and analysis of EXAFS and its
parameters including anharmonic effects at any temperature.
For this purpose an anharmonic factor has been intro-
duced10–12) to take into account the anharmonic contribu-
tions to the mean square relative displacement (MSRD).
This procedure provides a good agreement with experi-
ment,11) but the expressions for the anharmonic factor and

for the phase change of the EXAFS due to anharmonicity
contain a fitting parameter, and the cumulants were obtained
by an extrapolation procedure from the experimental data.

This work firstly is a next step of ref. 11 to develop an
analytical procedure which overcomes the above mentioned
limitations and to show more information. Our further
development is the derivation of analytical expressions for
the anharmonic factor determining the anharmonic contribu-
tions to the amplitude and for the anharmonic contributions
to the phase of the EXAFS. The cumulants contained in the
derived expressions can be considered by several proce-
dures.4,6,7,13–16) In this work the quantum statistical approach
with anharmonic correlated Einstein model15) has been used
for calculation of the cumulants in which the parameters of
the anharmonic effective potential are based on a Morse
potential that characterizes the interaction between each pair
of atoms. Including contributions of all atoms in all
directions in a small cluster by a simple way15) this model
avoids full lattices dynamical14) or dynamical matrix16)

calculations jet provides reasonable agreement with experi-
ment and with the other theory results14) even for the case of
strongly anharmonic crystal Cu. This model also is success-
ful in extracting physical parameters from the EXAFS
measured data,27) as well as in the investigation of local
force constants of transition metal dopants in a Nickel
host,28) and in contribution to theoretical approaches to the
EXAFS.29) Moreover, for nanostructure the clusters become
too small the bulk theory may start to break down, which is
one place the small cluster approach15) input is necessary.29)

This work secondly is a next step of the work by Hung and
Rehr15) applying the anharmonic correlated Einstein model
to calculation and analysis of EXAFS and its parameters
including anharmonic contributions. We get the total MSRD
and the EXAFS function which include anharmonic effects
at high temperatures and are approaching those of the
harmonic model at low temperatures. Cu metal spectra,
which are often used for testing new theories2,11,14,15,18,27)

also have been considered in this work, and numerical
results are found to be in good agreement with experi-
ment.17,19)�E-mail: vhung@phys-hu.edu.vn
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2. Formalism

The EXAFS oscillation function eq. (1) including anhar-
monic effects contains the Debye–Waller factor e�Wðk;TÞ

accounting for the effects of the thermal vibrations of atoms.
Based on the analysis4,15) of cumulant expansion we obtain

Wðk;TÞ ¼ 2ik�ð1ÞðTÞ � 2k2�ð2ÞðTÞ � 4ik�ð2ÞðTÞ
1

R
�

1
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�
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ik3�ð3ÞðTÞ þ

2

3
�ð4ÞðTÞk4 þ � � � ; ð2Þ

where �ð1Þ is the first cumulant or net thermal expansion, �ð2Þ

is the second cumulant which is equal to the MSRD �2, �ð3Þ

and �ð4Þ are the third and the fourth cumulants, respectively,
the remaining parameters were defined above. The higher
cumulants are not included due to their small contribu-
tions.3,5)

To consider anharmonic contributions to the MSRD we
used an argument analogous to the one20) for its change due
to the temperature increase and obtain

�2ðTÞ � �2ðT0Þ ¼ ð1þ �ðTÞÞ½�2
H � �2ðT0Þ�;

�ðTÞ ¼ 2�G
�V

V

ð3Þ

where �G is Grüneisen parameter, and �V=V is the relative
volume change due to thermal expansion, T0 is a very low
temperature so that �2ðT0Þ is a harmonic MSRD. This result
agrees with the one in another consideration4) on the change
of the MSRD. Developing further eq. (3) we obtain the total
MSRD

�2ðTÞ ¼ �2
HðTÞ þ �ðTÞ½�2

H � �2ðT0Þ�; ð4Þ

It is clear that the MSRD approaches the very small value
of zero-point contribution �2

0 when the temperature
approaches zero, i.e.,

�2ðT0Þ ! �2
0 ; for T0 ! 0:

Hence, it can be seen in eq. (4) that the total MSRD �2ðTÞ at
a given temperature T consists of the harmonic contribution
�2
HðTÞ and the anharmonic one �2

AðTÞ

�2ðTÞ ¼ �2
HðTÞ þ �2

AðTÞ; �2
AðTÞ ¼ �ðTÞ½�2

HðTÞ � �2
0�;

ð5Þ

This separation will help us to determine the anharmonic
contribution to the EXAFS amplitude.

We will illustrate the theory for a simple fcc crystal,
though the generalization to other structures or longer-range
interactions is straightforward. In the present approach we
apply the anharmonic correlated Einstein model15) to the
calculation of cumulants where the effective potential is
given by

VeffðxÞ ¼�
1

2
keffx

2 þ k3x
3 þ � � �

¼ VðxÞ þ
X
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Here x is the deviation of instantaneous bond length between
two atoms from equilibrium, R̂R is the bond unit vector, keff is

effective spring constant, and k3 the cubic parameter giving
an asymmetry in the pair distribution function. The
correlated Einstein model may be defined as a oscillation
of a pair of atoms with massesM1 andM2 (e.g., absorber and
backscatterer) in a given system. The contributions of all
their neighbors in all directions in a small cluster are given
by the last term in the left-hand side of eq. (6), where the
sum i is over absorber (i ¼ 1) and backscatterer (i ¼ 2), and
the sum j is over all their near neighbors, excluding the
absorber and backscatterer themselves whose contributions
are described by the term VðxÞ .

To model the asymmetry we replaced the harmonic
potential by an anharmonic one, e.g., a Morse potential21)

with parameters D and � which charactrizes the interaction
of each pair of atoms. Applying it to the effective potential
of the system of eq. (6) (ignoring the overall constant) we
obtain

keff ¼ 5D�2 1�
3

2
�a

� �
¼ �!2

E;

k3 ¼ �
5

4
D�3; �E ¼

h�!E

kB
;

ð7Þ

where kB is the Boltzmann constant; !E; �E are the correlated
Einstein frequency and temperature.

Using the above results in first-order thermodynamic
perturbation theory13,15) with consideration of the phonon–
phonon interaction for taking into account the anharmonicity
we obtain the cumulants

�ð1ÞðTÞ ¼ aðTÞ ¼ �ð1Þ
0
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where �ð1Þ
0 ; �2

0 ; �
ð3Þ
0 are the zero-point contributions to the

first, second and third cumulant, respectively.
We calculated the relative thermal volume change �V=V

using RðTÞ ¼ Rþ aðTÞ and Grüneisen parameter
�G ¼ � @ ln!E

@ lnV . By substituting the obtained results in eq.
(3) we derived an anharmonic factor

�ðTÞ ¼
9	ðTÞkBT

16D
1þ
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8DR�
1þ
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8DR�

� �� �
;

	ðTÞ ¼
2e��E=T

1þ e��E=T
:

ð11Þ

This factor is proportional to the temperature and
inversely proportional to the shell radius, thus reflecting a
similar property of anharmonicity obtained in an experi-
mental catalysis research2) if R is considered as particle
radius.

The anharmonic contribution �A to the EXAFS phase at a
given temperature is the difference between the total phase
and the one of the harmonic EXAFS. On the left-hand side
of eq. (2) the 2nd and the 5th terms contribute to the EXAFS
amplitude. Only the 1st, the 4th terms and the anharmonic
contributions to the MSRD in the 3rd term are the
anharmonic contributions to the phase. Therefore, from this
equation we obtain
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AðT ; kÞ ¼ 2k �ð1ÞðTÞ � 2�2
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The 4th cumulant is often very small.13,15,17) This is why
we obtained from eqs. (1) and (2), taking into account the
above results, the temperature dependent K-edge EXAFS
function including anharmonic effects as

�ðk;TÞ ¼
X
j

S20Nj

kR2
j

FjðkÞe�ð2k2�2ðTÞþ2Rj=�ðkÞÞ sinð2kRj þ 
jðkÞ þ 
j
Aðk;TÞÞ ð13Þ

which by taking eq. (5) into account is resulting in
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X
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S20Nj
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HðTÞþ�2

A
ðTÞ�þ2Rj=�ðkÞÞ sin 2kRj þ 
jðkÞ þ 
j

Aðk;TÞ
� �

ð14Þ

where S20 is the square of the many body overlap term, Nj is
the atomic number of each shell, the remaining parameters
were defined above, the mean free path � is defined by the
imaginary part of the complex photoelectron momentum
p ¼ k þ i=�, and the sum is over all atomic shells.

It is obvious that in eq. (14) �2
AðTÞ determines the

anharmonic contribution to the amplitude characterizing the
attenuation, and �Aðk; TÞ is the anharmonic contribution to
the phase characterizing the phase shift of EXAFS spectra.
They are calculated by eqs. (5) and (12), respectively. Their
values characterize the temperature dependence of the
anharmonicity, but the anharmonicity is described by the
cumulants given by eqs. (8)–(10) obtained by consideration
of the phonon–phonon interaction process. That is why they
also characterize the temperature dependence of the pho-
non–phonon interaction in the EXAFS theory. At low
temperatures these anharmonic values approach zero and the
EXAFS function eq. (14) is reduced to the one of the
harmonic model.

The Morse potential parameters D and � can be obtained
using experimental values of the energy of sublimation, the
compressibility, and the lattice constant, which are known
already.22) A such method for calculation of the Morse
potential parameters has been developed for cubic crystals23)

and for other structures.24)

3. Discussion of Numerical Results and Comparison
with Experiment

We applied the expressions derived in the previous
section to numerical calculations for Cu, Al, and Ni. Their
Morse potential parameters23) D, �; calculated effective
spring constant keff , correlated Einstein frequency !E and
temperature �E are written in Table I, where our calculated
value �E � 236K for Cu agrees well with the measured one
of 232(5) K.9) Figure 1 shows the temperature dependence of
our calculated anharmonic factors �ðTÞ for Cu, Al and Ni. In
the case of Cu it has the values 0.028 at 300K and 0.084 at
700K which agree well with those obtained in the other
studies.11,25) Figure 2 shows the temperature dependence of
our calculated anharmonic contribution �2

AðTÞ to the MSRD
determining the anharmonic contribution to the EXAFS
amplitude of Cu. It is small at low temperatures and then
increases strongly at high temperatures having a form
looking like the one of the third cumulant (Fig. 5). This
result also shows that below 100K no anharmonic effect in
the EXAFS of Cu is expected. It agrees well with our

Table I. Morse potential parameters D, �, the calculated effective spring

constant keff , correlated Einstein frequency !E, Einstein temperature �E of

Cu, Al and Ni.

Crystal D (eV) � ( �A�1) keff (N/m) !E (1013 Hz) �E (K)

Cu 0.3429 1.3588 50.7478 3.0889 235.9494

Al 0.2703 1.1646 29.3686 3.6102 275.7695

Ni 0.4205 1.4149 67.9150 3.7217 284.3095
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Fig. 1. Temperature dependence of the calculated anharmonic factor �ðTÞ
for Cu, Al and Ni.

Cu

T(K)

0 100 200 300 400 500 600 700

σ2 A
 (

Å
2 )

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

Fig. 2. Temperature dependence of the calculated anharmonic contribu-
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AðTÞ to the MSRD determing the anharmonic contributions to the

EXAFS amplitude.
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previous prediction11,12) and with experiment.2,17) Therefore,
�2
A also makes it possible to determine the temperature

above which the anharmonic effects or the phonon–phonon
interaction are visible. For Cu this temperature is about
100K. The increase of the anharmonic contribution to the
EXAFS amplitude at high temperature characterizes the
attenuation of EXAFS spectra in comparison to the one
calculated by the harmonic model (Fig. 7). Figure 3 illus-
trates the temperature dependence of our calculated total
MSRD �2ðTÞ of Cu compared to its harmonic one �2

HðTÞ and
to the experiment.17,19) The difference between the total and
the harmonic values becomes visible at 100K, but it is very
small and can be important only from about room tempera-
ture. Our calculated value 8:67� 10�3 �A2 of the total
anharmonic MSRD at 295K agree well with the measured
one17,19) of 8:67� 10�3 �A2 and with other theory14) result of
5:20� 10�3 �A2. Our result at 700K also agrees well with
experiment.19) The temperature dependence of the calculated
first cumulant �ð1Þ and third cumulant �ð3Þ of Cu are
illustrated in Figs. 4 and 5, respectively. They contribute to
the phase shifts of the EXAFS due to anharmonicity (Fig. 6).
Theoretical results agree well with the experimental values
at 295K for �ð1Þ19) and for �ð3Þ.17,19) Figure 6 illustrates the
temperature and k-dependence of our calculated anharmonic
contribution �Aðk;TÞ to the EXAFS phase of Cu for the first

shell for single scattering. These contributions are especially
large at high temperatures and high k-values. They con-
tribute to the phase differences between the calculated
anharmonic EXAFS spectra at different high temperatures
and to their phase shifts compared to those calculated by the
harmonic model. Figure 7 shows the difference between the
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Fig. 7. Comparison of the calculated EXAFS spectrum of Cu at 295K and

700K including the anharmonic contribution to the one calculated by the

harmonic model for the first shell for single scattering.
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Fig. 3. Temperature dependence of the calculated total MSRD �2ðTÞ of
Cu compared to the harmonic one �2

HðTÞ and to the measured values at

295K17,19) and at 700K.19)
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Fig. 4. Temperature dependence of the calculated first cumulant �ð1ÞðTÞ or
net thermal expansion of Cu compared to the measured value at 295K.19)

Fig. 6. Temperature and k-dependence of the calculated anharmonic

contribution �AðT ; kÞ to the EXAFS phase of Cu.
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Fig. 5. Temperature dependence of the calculated third cumulant �ð3ÞðTÞ
of Cu compared to the measured value at 295K.17,19)
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EXAFS spectra �k3 of Cu at 295 K and 700K calculated by
the harmonic FEFF code1) and those including anharmonic
contributions. The anharmonic spectra are shifted to the left
and attenuated especially at high k-values. Fourier transform
magnitudes over the range 2:5 �A

�1
< k < 13 �A

�1
for

T ¼ 297K [Fig. 8(a)] and for T ¼ 703K [Fig. 8(b)] of
EXAFS spectra of Cu calculated by the present anharmonic
theory are compared to those calculated by the harmonic
FEFF code1) and to the experimental results,19) measured at
HASYLAB (DESY, Germany). For XANES the multiple
scattering is important, but for EXAFS the single scattering
is dominant,26) and the main contribution to EXAFS is given
by the first shell.7) This is why for testing the theory only the
calculated EXAFS of the first shell for single scattering has
been used for the comparison to the experiment. The
generalization to the other shells is straightforward. Our
calculated EXAFS Fourier transform magnitudes of Cu
including anharmonic contributions for the first shell agree
well with the measured ones. They are shifted to smaller
distances by 0.03 �A at 297K and by 0.07 �A at 703K in

comparison to the harmonic model results, as well as
yielding apparently different structural information at the
different high temperatures.

4. Conclusion

A new analytical procedure for calculation and analysis of
EXAFS and its parameters including anharmonic contribu-
tions has been developed based on the cumulant expansion
and the single-shell model. Our development is the deriva-
tion of the expressions for the anharmonic contributions to
the amplitude and to the phase of the EXAFS. Total MSRD
is the sum of the harmonic and the anharmonic ones. The
anharmonic contribution to the MSRD is obtained by
multiplication of the harmonic MSRD with the new derived
anharmonic factor which characterizes anharmonic contri-
bution to the EXAFS amplitude.

Anharmonic contributions to the EXAFS and its para-
meters such as amplitude, phase, Fourier transform magni-
tude and the cumulants can be calculated and analyzed for
any temperature and for any k-value. The expressions
derived for the EXAFS and its parameters include anhar-
monic contributions at high temperatures and are approach-
ing those of the harmonic model at low temperature.
Moreover, based on the anharmonic contribution to the
EXAFS amplitude we also can predict the temperature
above which the anharmonicity or the phonon–phonon
interaction in the EXAFS is visible. Therefore, this work not
only shows the advantages of the analytical procedure
towards the ab initio calculation of the EXAFS and its
parameters including anharmonic contributions, but also
provides more useful and suggesting information compared
to the previous empirical procedure.

Based on the anharmonic correlated Einstein model the
calculating procedure is simplified yet provides a good
agreement of the calculated results for Cu with experiment.
This denotes the advantage and efficiency of the present
procedure for calculation and analysis of the EXAFS and its
parameters including anharmonic contributions.
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