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,ermodynamic properties and anharmonic effects in X-ray absorption fine structure (XAFS) have been studied based on the
anharmonic correlated Debye model Debye–Waller factors presented in terms of cumulant expansion. ,e derived analytical
expressions of three first XAFS cumulants involve more information on phonon-phonon interactions taken from integration over
the first Brillouin zone. Many-body effects are taken into account in the present one-dimensional model based on the first shell
near neighbor contributions to the vibrations between absorber and backscatterer atoms. Morse potential is assumed to describe
single-pair atomic interaction included in the derived anharmonic interatomic effective potential. ,e present theory can be
applied to any crystal structure including complex systems. Numerical results for Cu and Ni are found to be in good agreement
with experiment and with those of the other theories.

1. Introduction

X-ray absorption fine structure (XAFS) has developed into
a powerful probe of atomic structure, thermodynamic
properties, and anharmonic effects in atomic vibration of
substances [1–28]. ,ermal atomic vibrations and disorder
give rise to Debye–Waller factors (DWFs) in XAFS de-
scribing these properties of the considered material. ,e
formalism for including anharmonic effects in XAFS is often
based on cumulant expansion [1] where the even cumulants
contribute to the amplitude and the odd ones to the phase of
XAFS spectra. Hence, the accurate DWFs presented in terms
of cumulant expansion are crucial to quantitative treatment
of anharmonic XAFS. Consequently, the lack of the precise
DWFs or cumulants has been one of the biggest limitations

to accurate structural determinations, thermodynamic
properties, and anharmonic effects in atomic vibration of
materials taken from XAFS experiments. ,erefore, a reli-
able and effective method for treatment of thermal and
structural disorders based on DWFs still represents an open
problem, whose solution is expected to increase the amount
and accuracy of information obtainable from XAFS.

Many efforts have been made to derive procedures for
the calculation and analysis of cumulants describing the
thermodynamic properties and anharmonic effects or
phonon-phonon interactions in temperature-dependent
XAFS [2–28] using the classical approach [3–6] and
quantum theory [7–28]. Classical theories have the advan-
tages shown by simplicity and possibility of application to
high temperatures where anharmonicity is dominant, and
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quantum methods can be applied to both high and low
temperatures where quantum effects are evident. ,e
anharmonic correlated Einstein model (ACEM) [9] has
been derived for the calculation and analysis of DWFs
presented in terms of cumulant expansion up to the third
order. Its simplicity and efficiency in XAFS studies is
demonstrated by calculating and analyzing XAFS cumu-
lants of fcc [9–13], hcp [14], and crystals and in studying
pressure-dependent XAFS [15]. ,e statistical moment
method [16, 17] has been applied to calculate the mean
square relative displacement (MSRD) including anhar-
monic contributions of some crystals. ,e derived path-
integral effective potential (PIEP) method [18] has the
advantage for calculating XAFS DWFs presented in terms
of cumulant expansion up to the fourth order based on
quantum theory including three dimension, correlation,
anharmonicity, and many-body effects. ,e other efforts in
XAFS cumulant studies have been shown, for example, by
the path-integral Monte Carlo (PIMC) calculations [19],
the force constant method (FCM) [20], and the local
density approximation (LDA) [21] based on the density
functional theory calculations of dynamic matrix.

,e purpose of this work is XAFS study of the ther-
modynamic properties and anharmonic effects of materials
based on the anharmonic correlated Debye model (ACDM)
DWFs presented in terms of cumulant expansion up to the
third order. In Section 2, the analytical expressions for the
dispersion relation, correlated Debye frequency and tem-
perature, and three first XAFS cumulants have been derived.
,ey involve more information of phonon-phonon in-
teractions taken from integration over the first Brillouin
zone (BZ). ,e many-body effects are taken into account in
the present one-dimensional model based on the first shell
near neighbor contributions to the vibrations between ab-
sorber and backscatterer atoms. Morse potential is assumed
to describe the single-pair atomic interaction included in the
derived anharmonic interatomic effective potential. ,e
thermodynamic properties and anharmonic effects in
atomic vibration have been analyzed based on the obtained
temperature-dependent XAFS cumulants where the
anharmonicity causing thermal expansion and the MSRD
component perpendicular to bond direction have been
discussed in detail. ,is theory can be applied to any crystal
structure including complex systems. Numerical results for
Cu and Ni presented in Section 3 are compared to a large
number of experimental data [13, 19–26] and to those
calculated using several well-knownmethods such as ACEM
[9], SMM [16], PIEP [18], PIMC [19], FCM [20], and LDA
[21] at lowand high temperatures to show the advantage of
the present theory. ,e conclusions on the obtained results
are presented in Section 4 of the paper.

2. Formalism

2.1. Anharmonic Effective Potential. To determine XAFS
cumulants, it is necessary to specify the interatomic in-
teraction potential and force constant [3–27]. Let us con-
sider an anharmonic interatomic effective potential
expanded to the third order as follows:

Veff(x) ≈
1
2
keffx

2
+ k3effx

3
,

x � r− r0,

(1)

where keff is the effective local force constant, k3eff is the cubic
effective parameter giving an asymmetry of the anharmonic
effective potential, and x is deviation of the instantaneous bond
length between two immediate neighboring atoms r from its
equilibrium value r0.

,e anharmonic effective potential (2) is defined based
on an assumption in the center-of-mass frame of single bond
pair of absorber and backscatterer atoms:

Veff(x) � V(x) + 􏽘
j≠i

V
μ

Mi

x􏽢R
0

· 􏽢Rij􏼠 􏼡,

μ �
M1M2

M1 + M2
,

(2)

where the first term on the right concerns only absorber
and backscatterer with the masses M1 and M2, respectively,
and the second one includes the contributions of their
immediate near neighbors to the oscillation between ab-
sorber and backscatterer atoms. By projecting such in-
teractions along the bond direction as in (2), the purely
one-dimensional model is recovered. Hence, we have
extended this effective pair-interaction model to a one-
dimensional chain to partly account for dispersion effects
of the crystals. It is the difference of the present anharmonic
effective potential from the single-bond (SB) [7] and single-
pair (SP) [8] potentials, which concern only each pair of
immediate neighboring atoms given by V(x) without the
second one on the right of (2).

Note that the lattice contributions to the oscillation be-
tween absorber and backscatterer atoms illustrated by the
second term of (2) can be obtained using the first shell near
neighbors contributions approach (FSNNCA), which has been
successfully applied to bcc crystals [28]. Hence, based on the
first shell near neighbor contributions to the vibration between
absorber and backscatterer, the many-body effects have been
taken into account in the present one-dimensional model.

A Morse potential is assumed to describe the atomic
pair-interaction contained in the effective potential (2) and
expanded to the third order around its minimum:

V(x) � D e
−2αx − 2e

−αx
􏼐 􏼑 ≈ D −1 + α2x2 − α3x3

􏼐 􏼑, (3)

where α describes the width of the potential and D is dis-
sociation energy.

Applying Morse potential (3) to (2) and comparing the
results to (1), the values of keff and k3eff of the anharmonic
effective potential presented in terms of Morse potential
parameters are determined.

2.2. XAFS Cumulants Based on ACDM. In order to include
anharmonic effects in the present ACDM, the Hamiltonian
of system is written in the summation of the harmonic and
cubic anharmonic components, H0 and Ha, respectively:
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H � H0 + Ha, (4)

where H0 containing the local force constant, keff is used for
derivation of second cumulant, and the term Ha containing
the cubic anharmonic parameter k3eff is used for derivation
of the first and third cumulants of the materials.

Derivation of the present ACDM is performed using the
many-body perturbation approach (MBPA) [29] based on
the dualism of an elementary particle in quantum theory,
that is, its corpuscular and wave property. ,en, we can
describe the system in the present ACDM involving all
different frequencies up to the Debye frequency as a system
consisting of many bodies, that is, many phonons, each of
which corresponds to a wave having frequency ω(q) and
wave number q varied in the first BZ.Moreover, based on the
FSNNCA only backscattering from the first shell of absorber
and backscatterer atoms is taken into consideration. ,is
reduces and simplifies the derivations of the analytical ex-
pressions of the considered XAFS cumulants.

For this purpose, the displacement un
′s in the parameter

x in terms of the displacement of nth atom un of the one-
dimensional chain described by

xn � un+1 − un, (5)

is related to the phonon displacement operators Aq [30] in
the form

un �

����
Z

4Nμ

􏽳

􏽘
q

eiqan

����
ω(q)

􏽰 Aq,

Aq � A
+
−q,

Aq, Aq′􏽨 􏽩 � 0.

(6)

,en, (5) has resulted as

xn � 􏽘
q

e
iqan

f(q)Aq,

f(q) �

��������
Z

4Nμω(q)

􏽳

e
iqa − 1􏼐 􏼑,

(7)

where N is the atomic number, μ is reduced mass, and a is
the lattice constant.

,e frequency ω(q) contained in (7) and then in all
cumulant expressions derived for the oscillation between
absorber and backscatterer atoms in XAFS process under the
interactions of these atoms with their first shell near
neighbors describes the dispersion relation. Using the ob-
tained local force constant, it has resulted as

ω(q) �

���
keff

μ

􏽳

sin
qa

2
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, |q|≤

π
a

. (8)

At the bounds of the first BZ of the linear chain,
q � ±π/a, the frequency is maximum so that from (8), we

obtain the correlated Debye frequency ωD and temperature
θD in the form

ωD �

���
keff

μ

􏽳

,

θD �
ZωD

kB
,

(9)

where kB is Boltzmann constant.
Based on the above results, the cubic component of

Hamiltonian is expressed as

Hc � k3effx
3

� 􏽘
q1 ,q2 ,q3

V q1, q2, q3( 􏼁Aq1
Aq2

Aq3
, (10)

or in the following form using (6) for the displacement of nth
atom

Ha � k3eff􏽘
n

un+1 − un( 􏼁
3

� k3eff 􏽘
q1 ,q2 ,q3

􏽘
n

e
i q1+q2+q3( )an⎛⎝ ⎞⎠

· f q1( 􏼁f q2( 􏼁f q3( 􏼁Aq1
Aq2

Aq3
.

(11)

Comparing (11) to (10) and indicating

Δ(q) �
1
N

􏽘
n

e
iqna

,

Δ(0) � 􏽘
n

e
i0na

� N,

(12)

with N as the atomic number, we obtain

V q1, q2, q3( 􏼁 � k3effΔ q1 + q2 + q3( 􏼁f q1( 􏼁f q2( 􏼁f q3( 􏼁.

(13)

Using (6) and (12), (13) changes into

V q1, q2, q3( 􏼁 � k3eff
Z

4Nμ
􏼠 􏼡

3/2

􏽘
n

e
i q1+q2+q3( )an⎛⎝ ⎞⎠

·
eiq1a − 1( 􏼁 eiq2a − 1( 􏼁 eiq3a − 1( 􏼁

���������������
ω q1( 􏼁ω q2( 􏼁ω q3( 􏼁

􏽱 .

(14)

In the MBPA [28], the value 〈x〉 is calculated using the
expression

〈x〉 �
􏽐qf(q)〈AqS(β)〉0
〈S(β)〉0

, (15)

S(β) � 􏽘
∞

n�0

(−1)n

n!
􏽚
β

0
dτ1 . . . 􏽚

β

0
dτnT Ha τ1( 􏼁 . . . Ha τn( 􏼁􏼂 􏼃,

Ha(t) � e
tH0Hae

−tH0 ,

(16)
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which takes backscattering only from the first shell.
Substituting into (15) the relations [29]

〈AqS(β)〉0 � −􏽚 dτ􏼜 T Aq
􏽢H1(τ)􏽨 􏽩􏼝,

〈Aq〉0 � 0,

(17)

we obtain

〈x〉 � −􏽘
q

f(q) 􏽘
q1 ,q2 ,q3

V q1, q2, q3( 􏼁

· 􏽚
β

0
dτ􏼜T 􏽢Aq(0)􏽢Aq1

(τ)􏽢Aq2
(τ)􏽢Aq3

(τ)􏽨 􏽩􏼝
0
.

(18)

Using the Wick theorem for T-product in the integral,
the harmonic phonon Green function [29]

G
0
q,q′(τ) � 􏼜T 􏽢Aq(τ)􏽢Aq′(0)􏽨 􏽩􏼝

0
,

G
0
q,q′(τ) � −δq,−q′ 〈nq + 1〉e−Zω(q)τ

+〈nq〉e
Zω(q)τ

􏽮 􏽯,

(19)

the symmetric properties of V(q1, q2, q3) [30], properties
of function δq,−q′ , the phonon density

〈nq〉 �
1

Z(q)− 1
,

Z(q) � exp(βZω(q)),

β �
1

kBT
,

(20)

as well as ω(q) from (8), f(q) from (7), Δ(0) from (12) and
the phonon momentum conservation in the first BZ, we
change (18) into the following:

〈x〉 � −
3Zk3eff

4Nμkeff
􏽘
q

eiqa − 1( 􏼁 e−iqa − 1( 􏼁

ω(q)

1 + Z(q)

1−Z(q)

� −
3Zk3eff

N

�����

2μk3eff

􏽱 􏽘
q

sin
qa

2
1 + Z(q)

1−Z(q)
.

(21)

Using this expression, the first cumulant describing the
net thermal expansion or lattice disorder in XAFS theory has
resulted as

σ(1)
(T) � 〈x〉 � σ(1)

0 􏽚
π/a

0
ω(q)

1 + Z(q)

1−Z(q)
dq �

σ(1)
0
σ20

σ2,

σ(1)
0 � −

3aZk3eff

2πk2
eff

,

Z(q) � exp(βZω(q)),

β �
1

kBT
,

(22)

where σ2 is the second cumulant describing the mean
square relative displacement (MSRD) and has the following
form:

σ2(T) �〈x2〉 � σ20 􏽚
π/a

0
ω(q)

1 + z(q)

1− z(q)
dq,

σ20 �
Za

2πDkeff
,

(23)

where using (8) for ω(q), (7) for xn and f(q), (12) for Δ(q)

andΔ(0), (19) forG0
q,q′

(t), and (20) for 〈nq〉we calculate 〈x2〉

〈x2〉 � 􏼜 􏽘
n

xn+1 −xn( 􏼁
2
􏼝

0
�

Z

N
��
2μ

􏽰 􏽘
q

sin
qa

2

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌
1 + Z(q)

1−Z(q)
.

(24)

,e third cumulant is the mean cubic relative dis-
placement (MCRD) describing the asymmetry of the
pair distribution function in XAFS theory and has
resulted as

σ(3)
(T) � 〈x3〉 − 3〈x2〉〈x〉 � σ(3)

0 􏽚
π/a

0
dq1 􏽚

π/a−q1

−π/d
dq2

ω q1( 􏼁ω q2( 􏼁ω q1 + q2( 􏼁

ω q1( 􏼁 + ω q2( 􏼁 + ω q1 + q2( 􏼁

· 1 + 6
ω q1( 􏼁 + ω q2( 􏼁

ω q1( 􏼁 + ω q2( 􏼁−ω q1 + q2( 􏼁

eβZ ω q1( )+ω q2( )[ ] − eβZω q1+q2( )

eβZω q1( ) − 1􏼐 􏼑 eβZω q2( ) − 1􏼐 􏼑 eβZω q1+q2( ) − 1􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

σ(3)
0 �

3Z2k3eff

2N2k3
eff

,

(25)

where the calculation of 〈x3〉 is analogous to the one of 〈x〉
above, that is, 〈x3〉 �

􏽐q1 ,q2 ,q3
f q1( 􏼁f q2( 􏼁f q3( 􏼁〈Aq1

Aq2
Aq3

S(β)〉0
S(β)0

,

(26)
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where using S(β) from (17) with limiting only the cubic
anharmonic term, the Wick theorem for T-product, and the
symmetric properties of V(q1, q2, q3) [30], we calculated
〈x3〉. ,e product 3〈x2〉〈x〉 has been calculated using 〈x2〉
from (24) and 〈x〉 from (21).

In the above expressions for the cumulants in the present
ACDM, σ(1)

0 , σ20, σ(3)
0 are zero-point energy contributions

to the first, second, and third cumulant, respectively, and
these cumulant expressions have been obtained for the case
of large phonon numbers, when the summation over q is
replaced by the corresponding integral in the first BZ.
Moreover, we have used the phonon momentum conser-
vation in the first BZ [30] to describe the value of q3 by q1
and q2 for the first and third cumulant. ,is leads to re-
ducing the integrations for these cumulants given by (22)
and (25), respectively.

Note that the present theory is valid for any crystal
structure including complex systems; therefore, the other
developments for the monatomic [27] and bcc [28] crystals
are only its special cases.

2.3. High- and Low-Temperature Limits of XAFS Cumulants.
It is useful to consider the high-temperature (HT) limit,
where the classical approach [5, 6] is applicable, and the low-
temperature (LT) limit, where the quantum theory must be
used [9]. In the HT limit, we use the approximation

Z(q) ≈ 1 + βZω(q), (27)

to simplify the expressions for the cumulants. In the LT
limit, Z(q)≫ 1, so that all temperature-dependent terms
approach zero and the cumulants approach constant values,
for example, their zero-point contributions.,ese results are
written in Table 1.where

z �
1
a

􏽚
π/a

0

sin(qa/2)

Z(q)
dq,

Z3 �
6 ω q1( 􏼁 + ω q2( 􏼁􏼂 􏼃

ω q1( 􏼁 + ω q2( 􏼁􏼂 􏼃
2 −ω2 q3( 􏼁

Z q3( 􏼁−Z q1( 􏼁Z q2( 􏼁

Z q1( 􏼁Z q2( 􏼁Z q3( 􏼁
.

(28)

Note from Table 1 that at high temperatures, the first and
second cumulants are proportional to the temperature T, the

third cumulant to T2 as the standard characters for these
quantities as it was mentioned in the other theories [7–9]. At
low temperatures, they approach their zero-point energy
contributions which also involve contributions of q-values
from the first BZ. Moreover, at high temperature, the
cumulant ratio σ(1)σ2/σ(3) approaches the classical value of
1/2 [5, 6].

3. Numerical Results and Discussions

Now the expressions derived in the previous section are
applied to numerical calculations for Cu and Ni in fcc phase
using their Morse potential parameters [31] D� 0.3429 eV,
α� 1.3588 Å−1 for Cu and D� 0.4205 eV, α� 1.4199 Å−1 for
Ni, which were obtained using experimental values for the
energy of sublimation, the compressibility, and the lattice
constant. ,e values of local force constant keff , correlated
Debye frequencyωD, and temperature θD calculated using the
present theory are given in Table 2. ,ey are found to be in
good and reasonable agreement with the experimental values
[23, 25], where the experimental values of [23] have been
calculated from its measured Morse potential parameters [23]
as an extraction method which was used elsewhere [13].

,ermodynamic properties and anharmonic effects of
materials depend on the atomic interactions described by the
anharmonic interatomic effective potentials Veff presented
in Figure 1.,e present ACDM includes dispersion relations
ω(q) (Figure 2) to involve contributions of all atomic vi-
bration frequencies. ,eir values for Cu and Ni calculated
using the present theory are shown in good agreement with
experiment taken from the measured Morse potential pa-
rameters [23]. ,e anharmonic effective potentials are
asymmetric causing the anharmonic shifting, and the cor-
related frequencies approach the values of Debye frequencies
(Table 2) at the bounds of the first BZ, q � ±π/a.

Figure 3 shows good agreement of temperature de-
pendence of first cumulant σ(1)(T) of Cu and Ni calculated
using the present theory with the experimental values (Expt.)
[13, 19, 23] for Cu and [23] for Ni. Moreover, the results for
Cu agree well with those calculated using the ACEM [9].
Note that, using the first cumulant, we can obtain tem-
perature dependence of the first shell near neighbor distance
based on the expression R(T) � R(0) + σ(1)(T).

Table 1: Expressions of cumulants in LT (T→ 0) and HT (T→∞) limits.

Cumulant T→ 0 T→∞

σ(1) −􏼒6Zk3eff /π
�����

2μk3
eff

􏽱

􏼓(1 + z) −(3k3effkBT/k2eff )

σ2 􏼒2Z/π
�����
2μkeff

􏽰
􏼓(1 + z) kBT/keff

σ(3)

−􏼒3Z2k3eff /2N2k3eff􏼓

􏽐q1 ,q2 ,q3
(ω(q1)ω(q2)ω(q3))/(ω(q1)

+ω(q2) + ω(q3))(1 + Z3)

−((6k3eff(kBT)2)/k3eff )

σ(1)σ2/σ(3) — 1/2

Advances in Materials Science and Engineering 5



Temperature dependence of second cumulant σ2(T)
(Figure 4) of Cu and Ni calculated using the present theory
agrees well with the experimental values Expt. [13, 22, 23, 25]
for Cu and [23] for Ni, as well as with those calculated using
the ACEM [9]. Here, the present result is also compared to
those calculated using the SMM [16], FCM [20], and LDA
[21] for Cu and PIEP [18] for Ni, which are found to be in
reasonable agreement with the experiment.

Figure 5 shows good agreement of temperature de-
pendence of third cumulant σ(3)(T) of Cu and Ni calculated
using the present theory with the experimental values Expt.
[13, 23, 24, 26] for Cu and [23] for Ni. �ese results are also
found to be in good agreement with those calculated using
the ACEM [9] and the PIMC [19] for Cu.

�e cumulant ratio σ(1)σ2/σ(3) is often considered as
a standard for cumulant studies to identify the temperature
above which the classical limit is applicable [9–14]. Figure 6
shows that in the present ACDM this temperature is the
Debye temperature (θD� 334K for Cu and 376K for Ni)
while such temperature for ACEM is the Einstein temper-
ature [9] because from this temperature the ratio reaches the
classical value of 1/2 [9, 10, 14] and classical limit is ap-
plicable. Here, the result for Cu agrees well with the ex-
perimental values at 300K, 400K, and 500K [13].

Anharmonicity is the result of phonon-phonon in-
teraction and gives rise to thermal expansion shown in
temperature-dependent XAFS of materials. �e anharmonic
e�ects in XAFS have been detected quite early [32]. After the
�rst pioneering studies on AgI [33] and CuBr [2], it has been
shown that anharmonicity cannot be neglected in XAFS
studies of thermodynamic properties and structural de-
termination of materials [2–28]. �e XAFS cumulants pa-
rametrize the asymmetric distribution of interatomic

Table 2: �e values of local force constant keff , Debye frequency
ωD, and temperature θD of Ni and Cu calculated using the present
theory compared to experiment [23, 25].

Crystal keff (N/m) ωD (×1013 Hz) θD (K)
Ni, present 67.9750 5.2637 376.00
Ni, expt. [23] 63.4596 5.0881 378.00
Cu, present 50.7181 4.3717 333.94
Cu, expt. [23] 50.3450 4.3556 332.71
Cu, expt. [25] — — 328.00
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Figure 1: Anharmonic interatomic e�ective potentials Veff of Cu
and Ni calculated using the present theory compared to the ex-
perimental values (Expt.) [23] and to its harmonic term to show its
anharmonic shifting.
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Figure 2: Dispersion relations ω(q) of Cu and Ni calculated using
the present theory compared to the experimental values (Expt.)
[23].
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Figure 3: Temperature dependence of �rst cumulant σ(1)(T) of Cu
and Ni calculated using the present theory compared to the ex-
perimental values (Expt.) [13, 19, 23] for Cu and [23] for Ni, as well
as to those calculated using the ACEM [9] for Cu.
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distances and can be connected to the force constants of
a one-dimensional e�ective pair potential [5, 9–15, 34]. In
particular, the �rst three cumulants measure the average
value, the variance, and the asymmetry of the distribution,
respectively [25]. Both the �rst and third cumulants have
often been considered equally sensitive to thermal expansion
[35]. �is equivalence, which is valid for a one-dimensional

system, where the average distance is solely modi�ed by the
asymmetry of the interaction potential, was not con�rmed
by accurate XAFS measurements of nearest neighbors’
distances in several simple crystals [26, 32, 36]. Actually, the
�rst XAFS cumulant is lager than the distance between the
centers of the probability distribution functions, owing to
the e�ect of atomic vibrations perpendicular to the bond
direction [37, 38], and its temperature dependence is
stronger than the thermal expansion measured by Bragg
di�raction or by macroscopic techniques. �e di�erence
between XAFS and crystallographic thermal expansion can
be attributed to the MSRD component perpendicular to the
bond direction [21, 26]. Unfortunately, the PIMC calcula-
tions [19] have been performed on Cu. Here, the second
cumulant and the parallel MSRD have been independently
evaluated from the set of con�gurations generated by PIMC.
�e agreement between the two values suggests that the
contribution of the perpendicular MSRD to the second
cumulant is negligible, at least for Cu. Moreover, the good
agreement of cumulants calculated by ACDM in the present
work with several experimental data also con�rms the above
conclusion based on the PIMC calculations.

Consequently, in present work, the thermodynamic
properties and anharmonic e�ects of Cu and Ni in the fcc
phase have been studied based on the DWFs presented in
terms of cumulant expansion. Here, the second cumulant
describing MSRD is primarily a harmonic e�ect. But, the
�rst cumulant describing the net thermal expansion or
lattice disorder and the third cumulant or MCRD describing
the asymmetry of pair atomic distribution function are
entirely anharmonic e�ects. �ese obtained quantities are
evidently temperature-dependent where the �rst and second
cumulants are proportional to the temperature T and the
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Figure 4: Temperature dependence of second cumulant σ2(T) of
Cu and Ni calculated using the present theory compared to the
experimental values (Expt.) [13, 22, 23, 25] for Cu and [23] for Ni,
as well as to those calculated using the ACEM [9], SMM [16], FCM
[20], and LDA [21] for Cu and PIEP [18] for Ni.
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third cumulant is proportional to T2 at high temperatures as
in the classical theory and contain zero-point energy con-
tributions at low temperatures, a quantum effect. All they
contribute to is getting the accurate information on struc-
tural and thermodynamic parameters of fcc crystals taken
from XAFS experiments. ,e good agreement of the above
calculated results with the experiment makes it possible to
reproduce the experimental XAFS data of fcc crystals using
the present theory. Moreover, this agreement also shows that
the FSNNCA is sufficient to take into account the many-
body effects in the present one-dimensional model applied
to XAFS studies of the thermodynamic properties and
anharmonic effects of the considered crystals at least for Cu
and Ni.

4. Conclusions

In this work, the thermodynamic properties and anhar-
monic effects of materials have been studied based on XAFS
DWFs presented in terms of cumulant expansion up to the
third order which includes dispersion relation containing
more information on atomic vibrations taken from in-
tegration over the first BZ. ,is theory can be applied to any
crystal structure including complex systems.

,e ACDM applied to this work has been derived using
the MBPA based on the dualism (corpuscular and wave
property) of an elementary particle in quantum theory to
describe the system involving all different frequencies up to
Debye frequency as a system consisting of many phonons, as
well as the FSNNCA to take into account the many-body
effects in the present one-dimensional model. Based on these
approaches, the derivations of the analytical expressions and
the numerical calculations of XAFS quantities have been
significantly simplified and reduced.

,e derived analytical expressions of three first XAFS
cumulants satisfy all their fundamental properties in tem-
perature dependence and contribute to the valuation of the
thermodynamic properties and anharmonic effect in XAFS
of the consideredmaterials where they approach the classical
values at high temperature and contain zero-point energy
contributions at low temperatures, a quantum effect. All they
contribute to is getting the accurate information on struc-
tural and thermodynamic parameters of the considered
materials taken from XAFS experiments.

,e good agreement of numerical results for Cu and Ni
with experiment and with those calculated using the other
theories illustrates the advantages and efficiency of the
present theory in the calculation and analysis of the ther-
modynamic properties and anharmonic effects in XAFS of
substances and in material studies.
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